高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正则图上量子游走的仲裁量子签名方案

施荣华 冯艳艳 石金晶

施荣华, 冯艳艳, 石金晶. 基于正则图上量子游走的仲裁量子签名方案[J]. 电子与信息学报, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597
引用本文: 施荣华, 冯艳艳, 石金晶. 基于正则图上量子游走的仲裁量子签名方案[J]. 电子与信息学报, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597
Ronghua SHI, Yanyan FENG, Jinjing SHI. Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs[J]. Journal of Electronics & Information Technology, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597
Citation: Ronghua SHI, Yanyan FENG, Jinjing SHI. Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs[J]. Journal of Electronics & Information Technology, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597

基于正则图上量子游走的仲裁量子签名方案

doi: 10.11999/JEIT190597
基金项目: 国家自然科学基金(61871407, 61872390, 61972418),中南大学中央高校基本科研业务费专项基金(2018zzts179)
详细信息
    作者简介:

    施荣华:男,1963年生,教授,研究方向为量子密码协议、信息和网络安全

    冯艳艳:女,1991年生,博士生,研究方向为量子密码协议、量子游走及其应用

    石金晶:女,1986年生,副教授,研究方向为量子密码协议、量子神经网络及其应用

    通讯作者:

    冯艳艳 fengyanyanhenu@163.com

  • 中图分类号: TN918.2

Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs

Funds: The National Natural Science Foundation of China (61871407, 61872390, 61972418), The Fundamental Research Funds for the Central Universities of Central South University (2018zzts179)
  • 摘要:

    量子游走已经被提出可以用于瞬时地传输量子比特或多维量子态。根据量子游走的隐形传输模型,该文提出一种无需提前准备纠缠源的基于正则图上量子游走的仲裁量子签名算法。在初始化阶段,密钥是由量子密钥分发系统制备;在签名阶段,基于正则图上的量子游走隐形传输模型被用于转移信息副本密文从发送者到接收者。具体地,发送者编码要签名信息的密文在硬币态上,通过两步正则图上的量子游走,可以自动地产生用于量子隐形传输必须的纠缠态。发送者和接收者对制备的纠缠态的测量为签名生成和签名验证的凭据。在验证阶段,在仲裁的辅助下,验证者依照发送者的经典结果核实签名的有效性。此外,随机数和认证的公共板被引进阻止接收方在接收真正信息序列之前的存在性伪造攻击和否认攻击。安全性分析表明设计的算法满足签名者和接收者的不可抵赖以及任何人的不可伪造。讨论表明方案不能抗击发送者的抵赖攻击,相应的建议被给出。由于实验上已经证明量子游走可以在多个不同的物理系统上实现,因此该签名方案未来是可实现的。

  • 图  1  基于多个硬币的量子游走线路原理图

    图  2  基于两个硬币量子游走的隐形传输线路原理图

    图  3  比较两个未知量子态的线路原理图

    图  4  基于$d$正则图量子游走的AQS算法的原理图

    图  5  n分别取50, 100, 150 3种情况下Alice成功抵赖签名的概率${\rm{P}}{{\rm{r}}_{{\rm{dis}}}}$

  • NIELSEN M A and CHUANG I. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558–559. doi: 10.1119/1.1463744
    SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303–332. doi: 10.1137/S0036144598347011
    GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325–328. doi: 10.1103/PhysRevLett.79.325
    GUO Ying, LIAO Qin, WANG Yijun, et al. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction[J]. Physical Review A, 2017, 95(3): 032304. doi: 10.1103/PhysRevA.95.032304
    ZHANG Zhaoyuan, SHI Ronghua, ZENG Guihua, et al. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle[J]. Quantum Information Processing, 2018, 17(6): 1–18. doi: 10.1007/s11128-018-1903-0
    MEIJER H and AKL S. Digital signature schemes for computer communication networks[J]. ACM SIGCOMM Computer Communication Review, 1981, 11(4): 37–41. doi: 10.1145/1013879.802657
    ZENG Guihua and KEITEL C H. Arbitrated quantum-signature scheme[J]. Physical Review A, 2002, 65(4): 042312. doi: 10.1103/PhysRevA.65.042312
    BARNUM H, CRÉPEAU C, GOTTESMAN D, et al. Authentication of quantum messages[C]. The 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, Canada, 2002: 449–458. doi: 10.1109/SFCS.2002.1181969.
    LI Qin, CHAN W H, and LONG Dongyang. Arbitrated quantum signature scheme using Bell states[J]. Physical Review A, 2009, 79(5): 054307. doi: 10.1103/PhysRevA.79.054307
    ZOU Xiangfu and QIU Daowen. Security analysis and improvements of arbitrated quantum signature schemes[J]. Physical Review A, 2010, 82(4): 042325. doi: 10.1103/PhysRevA.82.042325
    GAO Fei, QIN Sujuan, GUO Fenzhuo, et al. Cryptanalysis of the arbitrated quantum signature protocols[J]. Physical Review A, 2011, 84(2): 022344. doi: 10.1103/PhysRevA.84.022344
    CHOI J W, CHANG K Y, and HONG D. Security problem on arbitrated quantum signature schemes[J]. Physical Review A, 2011, 84(6): 062330. doi: 10.1103/PhysRevA.84.062330
    张骏, 吴吉义. 可证明安全高效的仲裁量子签名方案[J]. 北京邮电大学学报, 2013, 36(2): 113–116.

    ZHANG Jun and WU Jiyi. Provable secure efficient arbitrated quantum signature scheme[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 113–116.
    LI Fengguang and SHI Jianhong. An arbitrated quantum signature protocol based on the chained CNOT operations encryption[J]. Quantum Information Processing, 2015, 14(6): 2171–2181. doi: 10.1007/s1112
    YANG Yuguang, LEI He, LIU Zhichao, et al. Arbitrated quantum signature scheme based on cluster states[J]. Quantum Information Processing, 2016, 15(6): 2487–2497. doi: 10.1007/s11128-016-1293-0
    ZHANG Long, SUN Hongwei, ZHANG Kejia, et al. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption[J]. Quantum Information Processing, 2017, 16(3): 1–15. doi: 10.1007/s11128-017-1531-0
    ZHANG Yingying and ZENG Jiwen. An improved arbitrated quantum scheme with Bell states[J]. International Journal of Theoretical Physics, 2018, 57(4): 994–1003. doi: 10.1007/s10773-017-3632-z
    GUO Ying, FENG Yanyan, HUANG Dazu, et al. Arbitrated quantum signature scheme with continuous-variable coherent states[J]. International Journal of Theoretical Physics, 2016, 55(4): 2290–2302. doi: 10.1007/s10773-015-2867-9
    FENG Yanyan, SHI Ronghua, and GUO Ying. Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states[J]. Chinese Physics B, 2018, 27(2): 020302. doi: 10.1088/1674-1056/27/2/020302
    LOU Xiaoping, LONG Hu, TANG Wensheng, et al. Continuous-variable arbitrated quantum signature based on dense coding and teleportation[J]. IEEE Access, 2019, 7: 85719–85726. doi: 10.1109/ACCESS.2019.2925635
    BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895–1899. doi: 10.1103/PhysRevLett.70.1895
    REN Lijie, HE Guangqiang, and ZENG Guihua. Universal teleportation via continuous-variable graph states[J]. Physical Review A, 2008, 78(4): 042302. doi: 10.1103/PhysRevA.78.042302
    AHARONOV Y, DAVIDOVICH L, and ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687–1690. doi: 10.1103/PhysRevA.48.1687
    MEYER D A. From quantum cellular automata to quantum lattice gases[J]. Journal of Statistical Physics, 1996, 85(5/6): 551–574. doi: 10.1007/BF02199356
    FARHI E and GUTMANN S. Quantum computation and decision trees[J]. Physical Review A, 1998, 58(2): 915–928. doi: 10.1103/PhysRevA.58.915
    CHILDS A M and Goldstone J. Spatial search by quantum walk[J]. Physical Review A, 2004, 70(2): 022314. doi: 10.1103/PhysRevA.70.022314
    AARONSON S and SHI Yaoyun. Quantum lower bounds for the collision and the element distinctness problems[J]. Journal of the ACM, 2004, 51(4): 595–605. doi: 10.1145/1008731.1008735
    DOUGLAS B L and WANG J B. A classical approach to the graph isomorphism problem using quantum walks[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(7): 075303. doi: 10.1088/1751-8113/41/7/075303
    DU Jiangfeng, LI Hui, XU Xiaodong, et al. Experimental implementation of the quantum random-walk algorithm[J]. Physical Review A, 2003, 67(4): 042316. doi: 10.1103/PhysRevA.67.042316
    SCHMITZ H, MATJESCHK R, SCHNEIDER C, et al. Quantum walk of a trapped ion in phase space[J]. Physical Review Letter, 2009, 103(9): 090504. doi: 10.1103/PhysRevLett.103.090504
    PERUZZO A, LOBINO M, MATTHEWS J C F, et al. Quantum walks of correlated photons[J]. Science, 2010, 329(5998): 1500–1503. doi: 10.1126/science.1193515
    WANG Yu, SHANG Yun, and XUE Peng. Generalized teleportation by quantum walks[J]. Quantum Information Processing, 2017, 16(9): 1–13. doi: 10.1007/s11128-017-1675-y
    SHANG Yun, WANG Yu, LI Meng, et al. Quantum communication protocols by quantum walks with two coins[J]. EPL (Europhysics Letters) , 2019, 124(6): 60009. doi: 10.1209/0295-5075/124/60009
    AHARONOV D, AMBAINIS A, KEMPE J, et al. Quantum walks on graphs[C]. The 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 2001: 50–59. doi: 10.1145/380752.380758.
    BRUN T A, CARTERET H A, and AMBAINIS A. Quantum walks driven by many coins[J]. Physical Review A, 2003, 67(5): 052317. doi: 10.1103/PhysRevA.67.052317
    BUHRMAN H, CLEVE R, WATROUS J, et al. Quantum fingerprinting[J]. Physical Review Letters, 2001, 87(16): 167902. doi: 10.1103/PhysRevLett.87.167902
    PÉREZ E, CURTY M, SANTOS D J, et al. Quantum authentication with unitary coding sets[J]. Journal of Modern Optics, 2003, 50(6/7): 1035–1047. doi: 10.1080/09500340308234550
  • 加载中
图(5)
计量
  • 文章访问数:  1868
  • HTML全文浏览量:  797
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-07
  • 修回日期:  2019-10-29
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回