高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于深度学习的自适应医学超声图像去斑方法

付晓薇 杨雪飞 陈芳 李曦

付晓薇, 杨雪飞, 陈芳, 李曦. 一种基于深度学习的自适应医学超声图像去斑方法[J]. 电子与信息学报, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
引用本文: 付晓薇, 杨雪飞, 陈芳, 李曦. 一种基于深度学习的自适应医学超声图像去斑方法[J]. 电子与信息学报, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
Citation: Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580

一种基于深度学习的自适应医学超声图像去斑方法

doi: 10.11999/JEIT190580
基金项目: 国家自然科学基金(61873323),材料成形与模具技术国家重点实验室开放课题研究基金(P2018-016),湖北省自然科学基金(2017CFB506),智能信息处理与实时工业系统湖北省重点实验室开放课题项目(2016znss02A, znxx2018ZD01),大学生科技创新基金项目(18ZRA076)
详细信息
    作者简介:

    付晓薇:女,1977年生,教授,研究方向为图像处理、计算机视觉、信号处理与分析

    杨雪飞:女,1994年生,硕士生,研究方向为图像处理、深度学习

    陈芳:女,1972年生,研究方向为肌骨超声图像的调节

    李曦:男,1977年生,教授,研究方向为计算机应用,复杂非线性系统的建模和控制

    通讯作者:

    付晓薇 fxw_wh0409@wust.edu.cn

  • 中图分类号: TN911.73

An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning

Funds: The National Natural Science Foundation of China (61873323), The Open Fund Project of State Key Laboratory of Material Processing and Die & Mould Technology (P2018-016), The Natural Science Foundation of Hubei Provincial (2017CFB506), The Open Fund Project of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System (2016znss02A, znxx2018ZD01), The University Student Science and Technology Innovation Fund Project (18ZRA076)
  • 摘要:

    针对传统医学超声图像去斑方法的不足,该文提出一种自适应多曝光融合框架和前馈卷积神经网络模型图像去斑方法。首先,制作超声图像训练数据集;然后,提出一种自适应增强因子的多曝光融合框架,增强图像进行有效特征提取;最后,通过网络训练去斑模型并获得去斑后的图像。实验结果表明,该文较已有的方法,能更有效地滤除医学超声图像中的斑点噪声并更多的保留图像细节。

  • 图  1  残差网络的基本结构

    图  2  本文流程图

    图  3  网络结构图

    图  4  模拟斑点肝脏超声图像1实验比较

    图  5  模拟斑点肝脏超声图像2实验比较

    图  6  真实医学超声图像去斑后结果比较

    表  1  模拟斑点肝脏超声图像1不同方法PSNR结果(dB)

    方法斑点噪声的标准差σ
    0.50.60.70.80.9
    BI-DTCWT35.422533.846132.536831.426530.3688
    NPSM34.582732.957331.536630.325029.2056
    NL-means34.928934.193433.355432.565831.6134
    BM3D36.170135.755235.248534.895134.2035
    Local_entropy_qsp36.781236.108335.436335.072634.5014
    DnCNN35.770135.839435.818035.676935.3885
    本文方法36.720336.713936.602536.356835.9492
    下载: 导出CSV

    表  4  模拟斑点肝脏超声图像2不同方法$\beta $结果

    方法斑点噪声的标准差σ
    0.50.60.70.80.9
    BI-DTCWT0.70780.63590.56120.50990.4661
    NPSM0.68300.61970.54790.49900.4517
    NL-means0.71910.67610.60370.54490.4899
    BM3D0.80300.79500.78260.76830.7355
    Local_entropy_qsp0.82630.80900.77870.75670.7384
    DnCNN0.92860.92380.91560.90290.8812
    本文方法0.93940.93250.92170.96530.8836
    下载: 导出CSV

    表  2  模拟斑点肝脏超声图像2不同方法PSNR结果(dB)

    方法斑点噪声的标准差σ
    0.50.60.70.80.9
    BI-DTCWT31.047729.540928.085627.434226.2056
    NPSM31.537430.098528.674527.669926.6843
    NL-means32.736031.753930.486029.510528.4174
    BM3D33.878633.309632.543632.019931.2079
    Local_entropy_qsp34.315733.242632.170631.532930.8599
    DnCNN34.976035.038234.849734.385133.6562
    本文方法35.928035.917035.628935.030134.1677
    下载: 导出CSV

    表  3  模拟斑点肝脏超声图像1不同方法$\beta $结果

    方法斑点噪声的标准差σ
    0.50.60.70.80.9
    BI-DTCWT0.64160.56110.48230.42910.3846
    NPSM0.59720.51540.43520.38170.3393
    NL-means0.45220.41020.35640.32620.2949
    BM3D0.59690.58200.56850.54770.5016
    Local_entropy_qsp0.65400.62870.59910.58420.5621
    DnCNN0.78030.77260.75950.73930.7106
    本文方法0.81280.80110.78310.75640.7208
    下载: 导出CSV

    表  5  真实斑点超声图像不同方法ENL结果

    方法ENL等效视数值
    BI-DTCWT61.2209
    NPSM64.6016
    NL-means109.5584
    BM3D93.4877
    Local_entropy_qsp79.1016
    DnCNN132.9184
    本文方法134.3287
    下载: 导出CSV

    表  6  50张真实斑点超声图像不同方法ENL平均值比较

    方法ENL等效视数值平均值
    BI-DTCWT75.5182
    NPSM75.5941
    NL-means110.6393
    BM3D110.9127
    Local_entropy_qsp93.7911
    DnCNN140.3622
    本文方法147.0689
    下载: 导出CSV
  • KANAYAMA Y and YANO M. Ultrasound diagnosis apparatus and ultrasound imaging method[P]. USA Patent, 10231710, 2019.
    ZHOU Yingyue, ZANG Hongbin, XU Su, et al. An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model[J]. Biomedical Signal Processing and Control, 2019, 48: 104–117. doi: 10.1016/j.bspc.2018.09.011
    JOEL T and SIVAKUMAR R. An extensive review on Despeckling of medical ultrasound images using various transformation techniques[J]. Applied Acoustics, 2018, 138: 18–27. doi: 10.1016/j.apacoust.2018.03.023
    沈民奋, 陈婷婷, 张琼, 等. 医用超声图像散斑去噪方法综述[J]. 中国医疗器械信息, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003

    SHEN Minfen, CHEN Tingting, ZHANG Qiong, et al. The review of speckle denoising in medical ultrasound imaging[J]. China Medical Device Information, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003
    KUAN D, SAWCHUK A, STRAND T, et al. Adaptive restoration of images with speckle[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 373–383. doi: 10.1109/TASSP.1987.1165131
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
    肖佳, 张俊华, 梅礼晔. 改进的三维块匹配去噪算法[J]. 计算机科学, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043

    XIAO Jia, ZHANG Junhua, and MEI Liye. Improved block-matching 3D denoising algorithm[J]. Computer Science, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043
    PERONA P and MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629–639. doi: 10.1109/34.56205
    YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
    TIAN Jing and CHEN Li. Image despeckling using a non-parametric statistical model of wavelet coefficients[J]. Biomedical Signal Processing and Control, 2011, 6(4): 432–437. doi: 10.1016/j.bspc.2010.11.006
    SENDUR L and SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744–2756. doi: 10.1109/TSP.2002.804091
    BURGER H C, SCHULER C J, and HARMELING S. Image denoising: Can plain neural networks compete with BM3D?[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2392–2399.
    SCHMIDT U and ROTH S. Shrinkage fields for effective image restoration[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2774–2781.
    CHEN Yunjin and POCK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743
    MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. Advances in Neural Information Processing Systems, Red Hook, USA, 2016: 2802–2810.
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    NADEEM M, HUSSAIN A, and MUNIR A. Fuzzy logic based computational model for speckle noise removal in ultrasound images[J]. Multimedia Tools and Applications, 2019, 78(9): 18531–18548.
    吕晓琪, 吴凉, 谷宇, 等. 基于深度卷积神经网络的低剂量CT肺部去噪[J]. 电子与信息学报, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769

    LÜ Xiaoqi, WU Liang, GU Yu, et al. Low dose CT lung denoising model based on deep convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
    YING Zhenqiang, LI Ge, REN Yurui, et al. A new image contrast enhancement algorithm using exposure fusion framework[C]. The 17th International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 2017: 36–46.
    ZHENG D, WANG J, and XIAO Z. Image enhancement based on local standard deviation[J]. Journal of Information and Computational Science, 2005, 2(2): 429–437.
    JIFARA W, JIANG Feng, RHO S, et al. Medical image denoising using convolutional neural network: A residual learning approach[J]. The Journal of Supercomputing, 2019, 75(2): 704–718. doi: 10.1007/s11227-017-2080-0
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014, 1409.1556.
    VEDALDI A and LENC K. MatconvNet: Convolutional neural networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692.
    FU Xiaowei, WANG Yi, CHEN Li, et al. An image despeckling approach using quantum-inspired statistics in dual-tree complex wavelet domain[J]. Biomedical Signal Processing and Control, 2015, 18: 30–35. doi: 10.1016/j.bspc.2014.11.005
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65.
    付晓薇, 代芸, 陈黎, 等. 基于局部熵的量子衍生医学超声图像去斑[J]. 电子与信息学报, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587

    FU Xiaowei, DAI Wei, CHEN Li, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics &Information Technology, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587
    PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A versatile wavelet domain noise filtration technique for medical imaging[J]. IEEE Transactions on Medical Imaging, 2003, 22(3): 323–331. doi: 10.1109/TMI.2003.809588
    RODTOOK A and MAKHANOV S S. Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer[J]. Journal of Visual Communication and Image Representation, 2013, 24(8): 1414–1430. doi: 10.1016/j.jvcir.2013.09.009
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  3588
  • HTML全文浏览量:  1466
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 修回日期:  2020-03-18
  • 网络出版日期:  2020-04-11
  • 刊出日期:  2020-07-23

目录

    /

    返回文章
    返回