An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation
-
摘要:
为解决基于时空正则项的目标跟踪算法(STRCF)在目标短时遮挡时定位精度低和目标旋转时尺度估计不准确的问题,该文提出了一种目标响应自适应的通道可靠性跟踪算法。该算法在目标模型训练时加入了目标响应正则项,通过在求解过程中更新理想目标响应函数,使得目标被短时遮挡后可重新跟踪目标;加入通道可靠性评价各特征通道的可靠性,提高了模型对目标的表达能力;将目标图像转换至对数极坐标系下训练尺度滤波器,提高在目标旋转时的尺度估计精度。实验结果表明,该文所提算法较STRCF在平均中心位置误差中降低了28.54个像素,在平均重叠率中提高了22.8%,在OTB2015数据集下成功率曲线下面积较STRCF提高了1.5%。
Abstract:In order to solve the problems of lower precision of target location in short-term occlusion and inaccurate of scale estimation of target in rotation by Spatial-Temporal Regularized Correlation Filters (STRCF), an object tracking algorithm with channel reliability and target response adaptation is proposed in this paper. In this algorithm, target response regularization is added to train target model. By updating the ideal target response function in the process of solving model, the target can be tracked again after being occluded for a short time. The reliability of each feature channel is evaluated by coefficient of channel reliability, which can improves the model's expression of the target. Scale filters can be trained in log-polar coordinates to improve the accuracy of scale estimation when target is rotating. The experimental results show that the proposed algorithm reduces 28.54 pixels in the average center position error and improves the average overlap rate by 22.8% compared with STRCF.
-
表 1 视频序列名称及属性
视频序列名称 视频属性 MountainBike 旋转、背景干扰 Basketball 遮挡、旋转、光照变化、形变、背景干扰 Panda 遮挡、旋转、尺寸变化、形变、
超出视野、低分辨率Girl2 遮挡、旋转、尺寸变化、形变、快速移动 KiteSurf 遮挡、旋转、光照变化 表 2 平均中心位置误差(像素)/平均重叠率
算法名称 MoutainBike Basketball Panda Girl2 KiteSurf SAMF-AT 8.85/0.67 22.91/0.49 36.15/0.23 99.65/0.35 58.09/0.35 SRDCF 9.30/0.67 10.08/0.57 45.06/0.17 182.33/0.21 59.18/0.35 STRCF 10.42/0.65 14.06/0.36 10.12/0.39 77.86/0.48 66.73/0.36 本文算法 9.98/0.68 6.30/0.75 7.00/0.51 10.51/0.70 2.70/0.74 -
王旭东, 王屹炜, 闫贺. 背景抑制直方图模型的连续自适应均值漂移跟踪算法[J]. 电子与信息学报, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588WANG Xudong, WANG Yiwei, and YAN He. Continuously adaptive mean-shift tracking algorithm with suppressed background histogram model[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588 黄立勤, 朱飘. 车载视频下改进的核相关滤波跟踪算法[J]. 电子与信息学报, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109HUANG Liqin and ZHU Piao. Improved kernel correlation filtering tracking for vehicle video[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109 LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 254–265. doi: 10.1007/978-3-319-16181-5_18. DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097. doi: 10.1109/CVPR.2014.143. DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/iccv.2015.490. BIBI A, MUELLER M, and GHANEM B. Target response adaptation for correlation filter tracking[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 419–433. doi: 10.1007/978-3-319-46466-4_25. WANG Ning, ZHOU Wengang, TIAN Qi, et al. Multi-cue correlation filters for robust visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4844–4853.doi: 10.1109/CVPR.2018.00509. TANG Ming, YU Bin, ZHANG Fan, et al. High-speed tracking with multi-kernel correlation filters[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4874–4833. doi: 10.1109/CVPR.2018.00512. CHOI J, CHANG H J, FISCHER T, et al. Context-aware deep feature compression for high-speed visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 479–488. doi: 10.1109/CVPR.2018.00057. LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515. BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/cvpr.2010.5539960. LUKEŽIČ A, VOJÍŘ T, ZAJC L C, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126(7): 671–688. doi: 10.1007/s11263-017-1061-3 LI Yang, ZHU Jianke, HOI S C H, et al. Robust estimation of similarity transformation for visual object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8666–8673. doi: 10.1609/aaai.v33i01.33018666 WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226 WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312.