高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种目标响应自适应的通道可靠性跟踪算法

王鹏 孙梦宇 王海燕 李晓艳 吕志刚

王鹏, 孙梦宇, 王海燕, 李晓艳, 吕志刚. 一种目标响应自适应的通道可靠性跟踪算法[J]. 电子与信息学报, 2020, 42(8): 1950-1958. doi: 10.11999/JEIT190569
引用本文: 王鹏, 孙梦宇, 王海燕, 李晓艳, 吕志刚. 一种目标响应自适应的通道可靠性跟踪算法[J]. 电子与信息学报, 2020, 42(8): 1950-1958. doi: 10.11999/JEIT190569
Peng WANG, Mengyu SUN, Haiyan WANG, Xiaoyan LI, Zhigang LÜ. An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1950-1958. doi: 10.11999/JEIT190569
Citation: Peng WANG, Mengyu SUN, Haiyan WANG, Xiaoyan LI, Zhigang LÜ. An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1950-1958. doi: 10.11999/JEIT190569

一种目标响应自适应的通道可靠性跟踪算法

doi: 10.11999/JEIT190569
基金项目: 国家自然科学基金(61271362),国家重点研发计划(2016YFC1400200),陕西省科技厅重点研发计划(2019GY-022、2019GY-066), 2019年西安市未央区科技计划项目(201923)
详细信息
    作者简介:

    王鹏:男,1978年生,教授,研究方向为机器视觉、模式识别、图像处理

    孙梦宇:男,1993年生,硕士生,研究方向为目标跟踪

    王海燕:男,1965年生,教授,研究方向为现代信号检测与现代信息处理

    李晓艳:女,1982年生,讲师,研究方向为目标检测、目标识别

    吕志刚:男,1978年生,副教授,研究方向为模式识别

    通讯作者:

    孙梦宇 1215200684@qq.com

  • 中图分类号: TN911.73; TP391

An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation

Funds: The National Natural Science Foundation of China (61271362),The National Key Research and Development Project (2016YFC1400200), The Key Science and Technology Program of Shaanxi Province (2019GY-022, 2019GY-066), Weiyang District of Xi’an 2019 Science and Technology Program (201923)
  • 摘要:

    为解决基于时空正则项的目标跟踪算法(STRCF)在目标短时遮挡时定位精度低和目标旋转时尺度估计不准确的问题,该文提出了一种目标响应自适应的通道可靠性跟踪算法。该算法在目标模型训练时加入了目标响应正则项,通过在求解过程中更新理想目标响应函数,使得目标被短时遮挡后可重新跟踪目标;加入通道可靠性评价各特征通道的可靠性,提高了模型对目标的表达能力;将目标图像转换至对数极坐标系下训练尺度滤波器,提高在目标旋转时的尺度估计精度。实验结果表明,该文所提算法较STRCF在平均中心位置误差中降低了28.54个像素,在平均重叠率中提高了22.8%,在OTB2015数据集下成功率曲线下面积较STRCF提高了1.5%。

  • 图  1  本文算法流程

    图  2  STRCF与本文算法所得的响应图对比

    图  3  4种算法在5个视频序列下的测试结果

    图  4  5个视频序列中心位置误差跟踪结果图

    图  5  5个视频序列重叠率结果图

    图  6  OTB2015数据集测试结果

    表  1  视频序列名称及属性

    视频序列名称视频属性
    MountainBike旋转、背景干扰
    Basketball遮挡、旋转、光照变化、形变、背景干扰
    Panda遮挡、旋转、尺寸变化、形变、
    超出视野、低分辨率
    Girl2遮挡、旋转、尺寸变化、形变、快速移动
    KiteSurf遮挡、旋转、光照变化
    下载: 导出CSV

    表  2  平均中心位置误差(像素)/平均重叠率

    算法名称MoutainBikeBasketballPandaGirl2KiteSurf
    SAMF-AT8.85/0.6722.91/0.4936.15/0.2399.65/0.3558.09/0.35
    SRDCF9.30/0.6710.08/0.5745.06/0.17182.33/0.2159.18/0.35
    STRCF10.42/0.6514.06/0.3610.12/0.3977.86/0.4866.73/0.36
    本文算法9.98/0.686.30/0.757.00/0.5110.51/0.702.70/0.74
    下载: 导出CSV
  • 王旭东, 王屹炜, 闫贺. 背景抑制直方图模型的连续自适应均值漂移跟踪算法[J]. 电子与信息学报, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588

    WANG Xudong, WANG Yiwei, and YAN He. Continuously adaptive mean-shift tracking algorithm with suppressed background histogram model[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588
    黄立勤, 朱飘. 车载视频下改进的核相关滤波跟踪算法[J]. 电子与信息学报, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109

    HUANG Liqin and ZHU Piao. Improved kernel correlation filtering tracking for vehicle video[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109
    LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 254–265. doi: 10.1007/978-3-319-16181-5_18.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097. doi: 10.1109/CVPR.2014.143.
    DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/iccv.2015.490.
    BIBI A, MUELLER M, and GHANEM B. Target response adaptation for correlation filter tracking[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 419–433. doi: 10.1007/978-3-319-46466-4_25.
    WANG Ning, ZHOU Wengang, TIAN Qi, et al. Multi-cue correlation filters for robust visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4844–4853.doi: 10.1109/CVPR.2018.00509.
    TANG Ming, YU Bin, ZHANG Fan, et al. High-speed tracking with multi-kernel correlation filters[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4874–4833. doi: 10.1109/CVPR.2018.00512.
    CHOI J, CHANG H J, FISCHER T, et al. Context-aware deep feature compression for high-speed visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 479–488. doi: 10.1109/CVPR.2018.00057.
    LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515.
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/cvpr.2010.5539960.
    LUKEŽIČ A, VOJÍŘ T, ZAJC L C, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126(7): 671–688. doi: 10.1007/s11263-017-1061-3
    LI Yang, ZHU Jianke, HOI S C H, et al. Robust estimation of similarity transformation for visual object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8666–8673. doi: 10.1609/aaai.v33i01.33018666
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  3644
  • HTML全文浏览量:  1122
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-29
  • 修回日期:  2020-03-25
  • 网络出版日期:  2020-04-03
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回