高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倒数粗糙熵图像阈值化分割算法

范九伦 雷博

范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214-221. doi: 10.11999/JEIT190559
引用本文: 范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214-221. doi: 10.11999/JEIT190559
Jiulun FAN, Bo LEI. Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy[J]. Journal of Electronics & Information Technology, 2020, 42(1): 214-221. doi: 10.11999/JEIT190559
Citation: Jiulun FAN, Bo LEI. Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy[J]. Journal of Electronics & Information Technology, 2020, 42(1): 214-221. doi: 10.11999/JEIT190559

倒数粗糙熵图像阈值化分割算法

doi: 10.11999/JEIT190559
基金项目: 国家自然科学基金(61671377, 61571361, 61601362),西安邮电大学西邮新星团队项目(xyt2016-01)
详细信息
    作者简介:

    范九伦:男,1964年生,教授,研究方向为模糊集理论、模糊信息处理、模式识别与图像处理、信息安全

    雷博:女,1981年生,副教授,研究方向为模糊信息处理、粗糙集理论、图像分割

    通讯作者:

    雷博 leileibo@xupt.edu.cn

  • 中图分类号: TP391.4

Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy

Funds: The National Natural Science Foundation of China(61671377, 61571361, 61601362), The Project of New Star Team of Xi’an University of Posts & Telecommunications (xyt2016-01)
  • 摘要:

    基于粗糙集理论的粗糙熵阈值法不需要图像之外的先验信息。粗糙熵阈值法需要解决两个问题,一是图像信息不完整性的度量,二是图像的粒化。该文基于倒数信息熵,提出一种倒数粗糙熵用来度量图像中信息的不完整性。为了更好地对图像进行粒化,采用一种基于均匀性直方图的粒子选取方式。该文提出的倒数粗糙熵表述简洁,计算简单。实验验证了该文方法的有效性。

  • 图  1  cameraman 图像的直方图和均匀性直方图

    图  2  均匀性直方图及最小峰宽度

    图  3  NDT image1分割结果

    图  4  NDT image2分割结果

    图  5  OTCBVS\库5\irw02\000215分割结果

    图  6  OTCBVS\库5\irw06\000225分割结果

    表  1  6种算法的阈值比较

    最大粗糙熵法模糊熵法罗的方法Masi熵法倒数熵法倒数粗糙熵法
    NDT image117751(151,151)83116221
    NDT image252177(106,115)4516072
    D5\irw02\0002156875(66,70)46148211
    D5\irw06\0002256575(66,67)46128209
    下载: 导出CSV

    表  2  6种算法的ME值与SSIM值比较

    NDT image1NDT image2D5\irw02\000215D5\irw06\000225
    MESSIMMESSIMMESSIMMESSIM
    最大粗糙熵法0.36050.02830.19960.58800.55560.00110.56710.0021
    模糊熵法0.95070.00150.22500.23450.50820.00130.47220.0029
    罗的方法0.63410.00980.00770.98220.55960.00130.56790.0021
    Masi熵法0.91360.00330.54700.16580.68410.00070.71810.0013
    倒数熵法0.84860.00490.20410.31720.03660.13670.04610.1585
    倒数粗糙熵法0.00160.97650.04290.90150.00510.72860.00840.6833
    下载: 导出CSV
  • SEZGIN M and SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146–165. doi: 10.1117/1.1631315
    OLIVA D, HINOJOSA S, CUEVAS E, et al. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm[J]. Expert Systems with Applications, 2017, 79: 164–180. doi: 10.1016/j.eswa.2017.02.042
    聂方彦, 李建奇, 张平凤, 等. 复杂图像的Kaniadakis熵阈值分割方法[J]. 激光与红外, 2017, 47(8): 1040–1045. doi: 10.3969/j.issn.1001-5078.2017.08.022

    NIE Fangyan, LI Jianqi, ZHANG Pingfeng, et al. Threshold segmentation method of complex image based on Kaniadakis entropy[J]. Laser &Infrared, 2017, 47(8): 1040–1045. doi: 10.3969/j.issn.1001-5078.2017.08.022
    NG H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644–1649. doi: 10.1016/j.patrec.2006.03.009
    BHANDARI A K, KUMAR A, and SINGH G K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms[J]. Expert Systems with Applications, 2015, 42(22): 8707–8730. doi: 10.1016/j.eswa.2015.07.025
    PAL S K, SHANKAR B U, and MITRA P. Granular computing, rough entropy and object extraction[J]. Pattern Recognition Letters, 2005, 26(16): 2509–2517. doi: 10.1016/j.patrec.2005.05.007
    PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341–356. doi: 10.1007/BF01001956
    PAWLAK Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Dordrecht: Springer, 1991: 2−8.
    岳晓冬, 苗夺谦, 钟才明. 基于粗糙性度量的彩色图像分割方法[J]. 自动化学报, 2010, 36(6): 807–816.

    YUE Xiaodong, MIAO Duoqian, and ZHONG Caiming. Roughness measure approach to color image segmentation[J]. Acta Automatica Sinica, 2010, 36(6): 807–816.
    吴涛. 图像阈值化的自适应粗糙熵方法[J]. 中国图象图形学报, 2014, 19(1): 1–10. doi: 10.11834/jig.20140101

    WU Tao. Adaptive rough entropy method for image thresholding[J]. Journal of Image and Graphics, 2014, 19(1): 1–10. doi: 10.11834/jig.20140101
    姚龙洋, 张清华, 胡帅鹏, 等. 基于近似集与粒子群的粗糙熵图像分割方法[J]. 计算机科学与探索, 2016, 10(5): 699–708.

    YAO Longyang, ZHANG Qinghua, HU Shuaipeng, et al. Rough entropy for image segmentation based on approximation sets and particle swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 699–708.
    刘丽华, 周涛, 周乾智. 基于VPRS粗糙熵的图像分割[J]. 计算机工程与应用, 2018, 54(20): 178–183. doi: 10.3778/j.issn.1002-8331.1804-0090

    LIU Lihua, ZHOU Tao, and ZHOU Qianzhi. Image segmentation on entropy of variable precision rough entropy[J]. Computer Engineering and Applications, 2018, 54(20): 178–183. doi: 10.3778/j.issn.1002-8331.1804-0090
    SARDAR M, MITRA S, and SHANKAR B U. Iris localization using rough entropy and CSA: A soft computing approach[J]. Applied Soft Computing, 2018, 67: 61–69. doi: 10.1016/j.asoc.2018.02.047
    HASSANIEN A E, ABRAHAM A, PETERS J F, et al. Rough sets and near sets in medical imaging: A review[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(6): 955–968. doi: 10.1109/TITB.2009.2017017
    SEN D and PAL S K. Generalized rough sets, entropy, and image ambiguity measures[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2009, 39(1): 117–128. doi: 10.1109/TSMCB.2008.2005527
    SEN D and PAL S K. Histogram thresholding using beam theory and ambiguity measures[J]. Fundamenta Informaticae, 2007, 75(1/4): 483–504.
    MAŁYSZKO D and STEPANIUK J. Adaptive multilevel rough entropy evolutionary thresholding[J]. Information Sciences, 2010, 180(7): 1138–1158. doi: 10.1016/j.ins.2009.11.034
    邓廷权, 盛春冬. 结合变精度粗糙熵和遗传算法的图像阈值分割方法[J]. 控制与决策, 2011, 26(7): 1079–1082.

    DENG Tingquan and SHENG Chundong. Image threshold segmentation based on entropy of variable precision rough sets and genetic algorithm[J]. Control and Decision, 2011, 26(7): 1079–1082.
    吴尚智, 佘志用, 张霞, 等. 利用变精度粗糙熵的图像分割算法[J]. 计算机工程与科学, 2018, 40(10): 1837–1843. doi: 10.3969/j.issn.1007-130X.2018.10.016

    WU Shangzhi, SHE Zhiyong, HANG Xia, et al. An image segmentation algorithm using variable precision rough entropy[J]. Computer Engineering &Science, 2018, 40(10): 1837–1843. doi: 10.3969/j.issn.1007-130X.2018.10.016
    PAL N R and PAL S K. Entropic thresholding[J]. Signal Processing, 1989, 16(2): 97–108. doi: 10.1016/0165-1684(89)90090-X
    吴一全, 占必超. 基于混沌粒子群优化的倒数熵阈值选取方法[J]. 信号处理, 2010, 26(7): 1044–1049. doi: 10.3969/j.issn.1003-0530.2010.07.015

    WU Yiquan and ZHAN Bichao. Thresholding based on reciprocal entropy and chaotic particle swarm optimization[J]. Signal Processing, 2010, 26(7): 1044–1049. doi: 10.3969/j.issn.1003-0530.2010.07.015
    吴一全, 殷骏, 毕硕本. 最大倒数熵/倒数灰度熵多阈值选取[J]. 信号处理, 2013, 29(2): 143–151. doi: 10.3969/j.issn.1003-0530.2013.02.001

    WU Yiquan, YIN Jun, and BI Shuoben. Multi-threshold selection using maximum reciprocal entropy/reciprocal gray entropy[J]. Journal of Signal Processing, 2013, 29(2): 143–151. doi: 10.3969/j.issn.1003-0530.2013.02.001
    CHENG Hengda and SUN Ying. A hierarchical approach to color image segmentation using homogeneity[J]. IEEE Transactions on Image Processing, 2000, 9(12): 2071–2082. doi: 10.1109/83.887975
    罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949

    LUO Jun, YANG Yongsong, and SHI Baoyu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949
    SHUBHAM S and BHANDARI A K. A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation[J]. Multimedia Tools and Applications, 2019, 78(12): 17197–17238. doi: 10.1007/s11042-018-7034-x
    LI Xueqin, ZHAO Zhiwei, and CHENG H S. Fuzzy entropy threshold approach to breast cancer detection[J]. Information Sciences - Applications, 1995, 4(1): 49–56. doi: 10.1016/1069-0115(94)00019-x
    http://vcipl-okstate.org/pbvs/bench/, 2013.
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2429
  • HTML全文浏览量:  925
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-10-25
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回