高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向自动协同驾驶的多车编队任务分配策略

李长乐 张云锋 张尧 毛国强 贾存兴

李长乐, 张云锋, 张尧, 毛国强, 贾存兴. 面向自动协同驾驶的多车编队任务分配策略[J]. 电子与信息学报, 2020, 42(1): 65-73. doi: 10.11999/JEIT190557
引用本文: 李长乐, 张云锋, 张尧, 毛国强, 贾存兴. 面向自动协同驾驶的多车编队任务分配策略[J]. 电子与信息学报, 2020, 42(1): 65-73. doi: 10.11999/JEIT190557
Changle LI, Yunfeng ZHANG, Yao ZHANG, Guoqiang MAO, Cunxing JIA. Task Assignment Strategy for Platoons in Cooperative Driving[J]. Journal of Electronics & Information Technology, 2020, 42(1): 65-73. doi: 10.11999/JEIT190557
Citation: Changle LI, Yunfeng ZHANG, Yao ZHANG, Guoqiang MAO, Cunxing JIA. Task Assignment Strategy for Platoons in Cooperative Driving[J]. Journal of Electronics & Information Technology, 2020, 42(1): 65-73. doi: 10.11999/JEIT190557

面向自动协同驾驶的多车编队任务分配策略

doi: 10.11999/JEIT190557
基金项目: 国家自然科学基金(U1801266),陕西省重点研发计划项目(2018ZDXM-GY-038, 2018ZDCXL-GY-04-02),陕西高校青年创新团队,西安市科技计划项目(201809170CX11JC12)
详细信息
    作者简介:

    李长乐:男,1976年生,教授,博士生导师,研究方向为网联网控无人驾驶、智能网联汽车超视距感知、交通大数据分析及应用、大规模网络技术、高动态网络技术等

    张云锋:男,1996年生,硕士生,研究方向为车辆编队、协同驾驶

    张尧:男,1993年生,博士生,研究方向为车联网、边缘计算、无线传感器网络

    毛国强:男,1974年生,教授,博士生导师,研究方向为智能交通技术、车联网、智慧公路与智能网联驾驶、下一代移动通信系统(5G)关键技术研发、物联网、无线定位技术等

    贾存兴:男,高级工程师,研究方向为公路与水路运输、建筑科学与工程

    通讯作者:

    李长乐 clli@mail.xidian.edu.cn

  • 中图分类号: TN929.5

Task Assignment Strategy for Platoons in Cooperative Driving

Funds: The National Natural Science Foundation of China (U1801266), The Key Research and Development Program of Shaanxi (2018ZDXM-GY-038, 2018ZDCXL-GY-04-02), The Youth Innovation Team of Shaanxi Universities, The Science and Technology Projects of Xi’an (201809170CX11JC12)
  • 摘要: 自动驾驶的实现需要大量车载传感器的支持,然而,在有限车载计算资源条件下,由传感器所产生的庞大数据量使得自动驾驶任务的实时性难以满足,成为阻碍自动驾驶技术进一步发展的重要阻力。通过将驾驶任务进行协作处理,因而充分利用多个协作车辆的计算资源,自动协同驾驶成为解决该问题的新途径。而如何形成多车编队并实现编队中驾驶任务分配则是实现自动协同驾驶的关键。该文首先采用排队理论G/G/1模型建立一种普适性车辆编队网络拓扑分析模型,充分考虑编队内车辆间的任务协作能力和单个车辆的任务负荷,得出任务的处理时延和车辆系统中的平均任务数;其次,采用支持向量机(SVM)方法,基于车辆的负荷程度及处理能力将车辆的“空闲”、“繁忙”两状态进行分类,进而建立针对车辆协作任务分配的候选车辆集。最后,基于上述分析,该文提出面向多车编队协同驾驶的任务均衡策略——基于分类的贪婪均衡策略(C-GBS),以充分平衡编队内所有车辆的任务负荷并利用不同车辆的任务处理能力。仿真结果表明,该策略能够减小重负荷网络中的任务处理时延,有效提升自动驾驶车辆的任务处理效率。
  • 图  1  自动协同驾驶的多车编队场景示意图

    图  2  车辆编队网络拓扑建模

    图  3  不同分配策略的任务总时延

    图  4  不同分配策略的处理时延比值关系图

    图  5  不同分配策略的系统资源利用率

    表  1  C-GBS算法

     输入:车辆集$V$,任务集T
     输出:结果集S
     (1) 基于对车辆状态的分类,初始化候选车辆集${V_1}$和结果集S
     (2) 遍历任务集T,选取T 中时延门限${T_i}$最小的任务${t_i}$,对其进行
       分配;
     (3) 选择候选车辆集${V_1}$中的第1辆车${v_{k,1}}$,根据${v_{k,1}}$的处理速率和
       任务${t_i}$的sizei估计${v_{k,1}}$处理任务${t_i}$所需的时间${\tau _{i,1}}$,并令
       $ {\tau _i} = {\tau _{i,1}},\kappa = 1$;
     (4) 遍历候选车辆集${V_1}$,依次计算${V_1}$中每辆车vk处理任务${t_i}$所需
       时间${\tau _{i,k}}$,若${\tau _{i,k}}<{\tau _{i}}$,则令$ {\tau _i} = {\tau _{i,k}},\kappa = k$;
     (5) 遍历${V_1}$完成后,将任务${t_i}$分配给${V_1}$中的第$ \kappa $辆车处理;
     (6) 更新车辆vk的状态,更新候选车辆集${V_1}$,更新任务集T并更
       新结果集S记录每项任务的处理情况;
     (7) 返回第(2)步,继续执行,直到任务全部完成。
    下载: 导出CSV
  • CESARI G, SCHILDBACH G, CARVALHO A, et al. Scenario model predictive control for lane change assistance and autonomous driving on highways[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 23–35. doi: 10.1109/MITS.2017.2709782
    CHANG L and DORMEHL L. 6 self-driving car crashes that tapped the brakes on the autonomous revolution[EB/OL]. https://www.digitaltrends.com/cool-tech/most-significant-self-driving-car-crashes/, 2018.
    SU Zhou, HUI Yilong, XU Qichao, et al. An edge caching scheme to distribute content in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5346–5356. doi: 10.1109/TVT.2018.2824345
    AISSIOUI A, KSENTINI A, GUEROUI A M, et al. On enabling 5G automotive systems using follow me edge-cloud concept[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5302–5316. doi: 10.1109/TVT.2018.2805369
    TRAN T X, HAJISAMI A, PANDEY P, et al. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges[J]. IEEE Communications Magazine, 2017, 55(4): 54–61. doi: 10.1109/MCOM.2017.1600863
    LUAN T H, CAI L X, CHEN Jiming, et al. Engineering a distributed infrastructure for large-scale cost-effective content dissemination over urban vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1419–1435. doi: 10.1109/TVT.2013.2251924
    SU Zhou, HUI Yilong, and GUO Song. D2D-based content delivery with parked vehicles in vehicular social networks[J]. IEEE Wireless Communications, 2016, 23(4): 90–95. doi: 10.1109/MWC.2016.7553031
    LI S E, GAO Feng, LI Keqiang, et al. Robust longitudinal control of multi-vehicle systems-a distributed h-infinity method[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2779–2788. doi: 10.1109/TITS.2017.2760910
    JAIN A, GHOSE D, and MENON P P. Multi-vehicle formation in a controllable force field with non-identical controller gains[J]. IET Control Theory & Applications, 2018, 12(6): 802–811.
    LI Xin and ZHU Daqi. An adaptive SOM neural network method for distributed formation control of a group of AUVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8260–8270.
    LIU Yuanchang and BUCKNALL R. A survey of formation control and motion planning of multiple unmanned vehicles[J]. Robotica, 2018, 36(7): 1019–1047. doi: 10.1017/S0263574718000218
    ZHU Daqi, CAO Xiang, SUN Bing, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(2): 304–313. doi: 10.1109/TCDS.2017.2727678
    GODFREY G A and POWELL W B. An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times[J]. Transportation Science, 2002, 36(1): 40–54. doi: 10.1287/trsc.36.1.40.572
    VIEGAS D, BATISTA P, OLIVEIRA P, et al. Discrete-time distributed Kalman filter design for formations of autonomous vehicles[J]. Control Engineering Practice, 2018, 75: 55–68. doi: 10.1016/j.conengprac.2018.03.014
    The 5G Infrastructure Public Private Partnership (5G PPP). 5G PPP white paper on automotive vertical sectors[EB/OL]. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf, 2015.
    PENG Haixia, LI Dazhou, ABBOUD K, et al. Performance analysis of IEEE 802.11p DCF for multiplatooning communications with autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2485–2498. doi: 10.1109/TVT.2016.2571696
    3GPP. Study on LTE-based V2X services[EB/OL]. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2934.
    PIRO G, ORSINO A, CAMPOLO C, et al. D2D in LTE vehicular networking: System model and upper bound performance[C]. The 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Brno, Czech Republic, 2015: 281–286.
    WHITT W. The queueing network analyzer[J]. The Bell System Technical Journal, 1983, 62(9): 2779–2815. doi: 10.1002/j.1538-7305.1983.tb03204.x
    DAVIS J L, MASSEY W A, and WHITT W. Sensitivity to the service-time distribution in the nonstationary erlang loss model[J]. Management Science, 1995, 41(6): 1107–1116. doi: 10.1287/mnsc.41.6.1107
    LI Changle, ZHANG Yao, LUAN T H, et al. Building transmission backbone for highway vehicular networks: Framework and analysis[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8709–8722. doi: 10.1109/TVT.2018.2844471
    WHITT W. Approximating a point process by a renewal process, I: Two basic methods[J]. Operations Research, 1982, 30(1): 125–147. doi: 10.1287/opre.30.1.125
    RAY W D. Basic queueing theory[J]. Journal of the Royal Statistical Society: Series A, 1988, 151(3): 550–684.
    AVIDAN S. Support vector tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072. doi: 10.1109/TPAMI.2004.53
    MOLINA-MASEGOSA R and GOZALVEZ J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications[J]. IEEE Vehicular Technology Magazine, 2017, 12(4): 30–39. doi: 10.1109/MVT.2017.2752798
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2911
  • HTML全文浏览量:  1213
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-11-28
  • 网络出版日期:  2019-11-29
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回