高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂多径信号下基于空域变换的米波雷达稳健测高算法

陈根华 陈伯孝

陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法[J]. 电子与信息学报, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
引用本文: 陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法[J]. 电子与信息学报, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
Genhua CHEN, Baixiao CHEN. Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
Citation: Genhua CHEN, Baixiao CHEN. Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554

复杂多径信号下基于空域变换的米波雷达稳健测高算法

doi: 10.11999/JEIT190554
基金项目: 国家自然科学基金(61401187),江西省教育厅科学技术研究项目(GJJ170990)
详细信息
    作者简介:

    陈根华:男,1980年生,副教授,博士,研究方向为阵列雷达信号处理

    陈伯孝:男,1966年生,教授,博士生导师,研究方向为新体制雷达系统设计及其实现、雷达信号处理、目标精确制导与跟踪等

    通讯作者:

    陈根华 cghnit@126.com

  • 中图分类号: TN958

Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar

Funds: The National Natural Science Foundation of China(61401187), The Science Research of Jiangxi Provincial Department of Education(GJJ170990)
  • 摘要:

    针对米波(VHF)雷达的复杂多径信号中散射分量的非高斯性严重影响测高的稳定性,该文提出了稳健的空域符号变换最大似然测高算法。该算法先对多维阵列快拍矢量进行空域符号变换处理,以抑制散射分量野值点对阵列协方差矩阵及其测高算法的影响,再计算符号协方差矩阵(SCM),然后根据符号协方差矩阵的映射等效性和特征空间不变性,将符号协方差矩阵应用到最大似然(SCM-ML)测高算法中,实现了稳健的米波雷达低角测高。该算法有效抑制了多径信号中散射分量和波束打地形成的强杂波的非高斯性,提高了米波雷达低角测高的稳健性。仿真结果和实测数据验证了算法的稳健性与有效性。

  • 图  1  复杂环境下米波雷达低角目标测高示意图

    图  2  空域符号变换示意图

    图  3  某相控阵米波雷达低角目标回波序列

    图  4  符号变换后SCM特征值分布

    图  5  SCM-ML测高算法精度

    图  6  SCM-ML测高算法低角估计分布

    图  7  SCM-ML稳健性能分析及测高算法分辨性能

  • BALAJTI I, KENDE G, and SINNER E. Increased importance of VHF radars in ground-based air defense[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(1): 4–18. doi: 10.1109/MAES.2012.6145436
    郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013

    ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013
    LI Cunxu, CHEN Baixiao, ZHENG Yisong, et al. Altitude measurement of low elevation target in complex terrain based on orthogonal matching pursuit[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 745–751. doi: 10.1049/iet-rsn.2016.0468
    BARTON D K. Radar Equations for Modern Radar[M]. Boston: Artech House, 2012: 80–82.
    EZUMA M, OZDEMIR O, ANJINAPPA C K, et al. Micro-UAV detection with a low-grazing angle Millimeter wave radar[C]. 2019 IEEE Radio and Wireless Symposium, Orlando, USA, 2019: 1–4. doi: 10.1109/RWS.2019.8714203.
    RAYMAEKERS J and ROUSSEEUW P. A generalized spatial sign covariance matrix[J]. Journal of Multivariate Analysis, 2019, 171: 94–111. doi: 10.1016/j.jmva.2018.11.010
    HAYKIN S. Adaptive Radar Signal Processing[M]. Hoboken: Wiley & Sons, 2006: 1–60.
    BILLINGSLEY J B. Low-angle Radar Land Clutter: Measurements and Empirical Models[M]. Norwich, NY: William Andrew Publishing, 2002: 300–350.
    SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675
    AUGUIN N, MORALES-JIMENEZ D, MCKAY M R, et al. Large-dimensional behavior of regularized Maronna’s M-estimators of covariance matrices[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3259–3272. doi: 10.1109/TSP.2018.2831629
    LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131
    VISURI S, OJA H, and KOIVUNEN V. Subspace-based direction-of-arrival estimation using nonparametric statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 2060–2073. doi: 10.1109/78.942634
    KOZICK R J and SADLER B M. Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures[J]. IEEE Transactions on Signal Processing, 2000, 48(12): 3520–3525. doi: 10.1109/78.887045
    HAMPEL F R, RONCHETTI E M, ROUSSEEUW P J, et al. Robust Statistics: The Approach Based on Influence Functions[M]. New York, USA: John Wiley & Sons Inc., 1986: 275–276.
    BAKTASH E, KARIMI M, and WANG Xiaodong. Maximum-likelihood direction finding under elliptical noise using the EM algorithm[J]. IEEE Communications Letters, 2019, 23(6): 1041–1044. doi: 10.1109/LCOMM.2019.2911518
    PAN Yan, DUAN Fabing, CHAPEAU-BLONDEAU F, et al. Noise enhancement in robust estimation of location[J]. IEEE Transactions on Signal Processing, 2018, 66(8): 1953–1966. doi: 10.1109/TSP.2018.2802463
  • 加载中
图(7)
计量
  • 文章访问数:  3734
  • HTML全文浏览量:  983
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-24
  • 修回日期:  2020-02-24
  • 网络出版日期:  2020-03-21
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回