高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迁移演员-评论家学习的服务功能链部署算法

唐伦 贺小雨 王晓 陈前斌

唐伦, 贺小雨, 王晓, 陈前斌. 基于迁移演员-评论家学习的服务功能链部署算法[J]. 电子与信息学报, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
引用本文: 唐伦, 贺小雨, 王晓, 陈前斌. 基于迁移演员-评论家学习的服务功能链部署算法[J]. 电子与信息学报, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
Lun TANG, Xiaoyu HE, Xiao WANG, Qianbin CHEN. Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
Citation: Lun TANG, Xiaoyu HE, Xiao WANG, Qianbin CHEN. Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542

基于迁移演员-评论家学习的服务功能链部署算法

doi: 10.11999/JEIT190542
基金项目: 国家自然科学基金(61571073),重庆市教委科学技术研究项目(KJZD-M20180601)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,博士生导师,主要研究方向为新一代无线通信网络、异构蜂窝网络等

    贺小雨:女,1995年生,硕士生,研究方向为网络切片资源分配和强化学习

    王晓:男,1995年生,硕士生,研究方向为网络切片资源优化和机器学习

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    贺小雨 Hexy1995@163.com

  • 中图分类号: TN915

Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M20180601)
  • 摘要: 针对5G网络切片环境下由于业务请求的随机性和未知性导致的资源分配不合理从而引起的系统高时延问题,该文提出了一种基于迁移演员-评论家(A-C)学习的服务功能链(SFC)部署算法(TACA)。首先,该算法建立基于虚拟网络功能放置、计算资源、链路带宽资源和前传网络资源联合分配的端到端时延最小化模型,并将其转化为离散时间马尔可夫决策过程(MDP)。而后,在该MDP中采用A-C学习算法与环境进行不断交互动态调整SFC部署策略,优化端到端时延。进一步,为了实现并加速该A-C算法在其他相似目标任务中(如业务请求到达率普遍更高)的收敛过程,采用迁移A-C学习算法实现利用源任务学习的SFC部署知识快速寻找目标任务中的部署策略。仿真结果表明,该文所提算法能够减小且稳定SFC业务数据包的队列积压,优化系统端到端时延,并提高资源利用率。
  • 图  1  系统架构

    图  2  A-C学习框架

    图  3  不同演员学习率A-C算法的收敛性

    图  4  不同评论家学习率A-C算法的收敛性

    图  5  基于不同优化器的A-C算法的收敛性

    图  6  3种切片的数据包到达率与队列积压和变化对照图

    图  7  3个切片的VNF放置方式选择统计图

    图  8  不同算法的系统收敛时延

    图  9  不同算法的资源利用率

    图  10  不同迁移率因子的TACA算法收敛过程

    表  1  基于迁移A-C学习的SFC部署算法

     输入:高斯策略${ {\pi} _\theta }(s,a)\sim N(\mu (s),{\sigma ^2})$,以及其梯度${{\text{∇}} _\theta }\ln { {\pi} _\theta }(s,a)$,状态分布${d^{\pi} }(s)$,学习率${\varepsilon _{a,t}}$和${\varepsilon _{c,t}}$,折扣因子$\beta $
     (1) for ${\rm{epsoide } }= 0,1,2, ··· ,E{p_{\max} }$ do
     (2) 初始化:策略参数向量${{{\theta }}_t}$,状态-动作值函数参数向量${\omega _t}$,状态值函数参数向量${{{\upsilon}} _t}$,初始状态${s_0}\sim{d_{\pi} }(s)$,本地部署策略${\pi} _\theta ^n(s,a)$,外
       来迁移部署策略${\pi} _\theta ^e(s,a)$
     (3) for 回合每一步$t = 0,1, ··· ,T$do
     (4) 由式(20)得到整体部署策略,遵循整体策略${ {\pi} _\theta }(s,a)$选择动作${a^{(t)}}$,进行VNF放置和资源分配,而后更新环境状态${s^{(t + 1)}}$,并得到立即
       奖励${R_t} = - \tau (t)$
     (5) end for
     (6) 评论家过程:
     (a) 计算相容特征:由式(10)得处于状态$s$的基函数向量,结合式(14),式(15)得相容特征
     (b) 相容近似:由式(11)得状态-动作值函数近似,由式(16)得状态值函数近似
     (c) TD误差计算:由式(12),式(17)分别得状态-动作值函数、状态值函数的TD误差
     (d) 更新评论家参数:由式(13)得状态-动作值函数参数向量更新,由式(18)得状态值函数参数向量更新
     (7) 演员过程:
     (a) 计算优势函数
     (b) 重写策略梯度:代入优势函数由式(19)得策略梯度
     (c) 更新演员参数:由式(8)得策略参数向量更新
     (8) end for
    下载: 导出CSV
  • AGARWAL S, MALANDRINO F, CHIASSERINI C F, et al. VNF placement and resource allocation for the support of vertical services in 5G networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 433–446. doi: 10.1109/TNET.2018.2890631
    史久根, 张径, 徐皓, 等. 一种面向运营成本优化的虚拟网络功能部署和路由分配策略[J]. 电子与信息学报, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522

    SHI Jiugen, ZHANG Jing, XU Hao, et al. Joint optimization of virtualized network function placement and routing allocation for operational expenditure[J]. Journal of Electronics &Information Technology, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522
    LI Defang, HONG Peilin, XUE Kaiping, et al. Virtual network function placement considering resource optimization and SFC requests in cloud datacenter[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(7): 1664–1677. doi: 10.1109/TPDS.2018.2802518
    PEI Jianing, HONG Peilin, and LI Defang. Virtual network function selection and chaining based on deep learning in SDN and NFV-Enabled networks[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403657.
    CAI Yibin, WANG Ying, ZHONG Xuxia, et al. An approach to deploy service function chains in satellite networks[C]. NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, China, 2018: 1–7. doi: 10.1109/NOMS.2018.8406159.
    QU Long, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    陈前斌, 杨友超, 周钰, 等. 基于随机学习的接入网服务功能链部署算法[J]. 电子与信息学报, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310

    CHEN Qianbin, YANG Youchao, ZHOU Yu, et al. Deployment algorithm of service function chain of access network based on stochastic learning[J]. Journal of Electronics &Information Technology, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310
    PHAN T V, BAO N K, KIM Y, et al. Optimizing resource allocation for elastic security VNFs in the SDNFV-enabled cloud computing[C]. 2017 International Conference on Information Networking, Da Nang, Vietnam, 2017: 163–166. doi: 10.1109/ICOIN.2017.7899497.
    XIA Weiwei and SHEN Lianfeng. Joint resource allocation using evolutionary algorithms in heterogeneous mobile cloud computing networks[J]. China Communications, 2018, 15(8): 189–204. doi: 10.1109/CC.2018.8438283
    ZHU Zhengfa, PENG Jun, GU Xin, et al. Fair resource allocation for system throughput maximization in mobile edge computing[J]. IEEE Access, 2018, 6: 5332–5340. doi: 10.1109/ACCESS.2018.2790963
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    MEHRAGHDAM S, KELLER M, and KARL H. Specifying and placing chains of virtual network functions[C]. The 3rd IEEE International Conference on Cloud Networking, Luxembourg, Luxembourg, 2014: 7–13. doi: 10.1109/CloudNet.2014.6968961.
    HAGHIGHI A A, HEYDARI S S, and SHAHBAZPANAHI S. MDP modeling of resource provisioning in virtualized content-delivery networks[C]. The 25th IEEE International Conference on Network Protocols, Toronto, Canada, 2017: 1–6. doi: 10.1109/ICNP.2017.8117600.
    GRONDMAN I, BUSONIU L, LOPES G A D, et al. A survey of actor-critic reinforcement learning: Standard and natural policy gradients[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2012, 42(6): 1291–1307. doi: 10.1109/TSMCC.2012.2218595
    LEE D H and LEE J J. Incremental receptive field weighted actor-critic[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 62–71. doi: 10.1109/TII.2012.2209660
    LI Rongpeng, ZHAO Zhifeng, CHEN Xianfu, et al. TACT: A transfer actor-critic learning framework for energy saving in cellular radio access networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2000–2011. doi: 10.1109/TWC.2014.022014.130840
    KOUSHI A M, HU Fei, and KUMAR S. Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in cognitive radio networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(5): 1204–1215. doi: 10.1109/TMC.2017.2744620
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2647
  • HTML全文浏览量:  1332
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2020-03-07
  • 网络出版日期:  2020-04-08
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回