高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚拟网络切片中的在线异常检测算法研究

王威丽 陈前斌 唐伦

王威丽, 陈前斌, 唐伦. 虚拟网络切片中的在线异常检测算法研究[J]. 电子与信息学报, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
引用本文: 王威丽, 陈前斌, 唐伦. 虚拟网络切片中的在线异常检测算法研究[J]. 电子与信息学报, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
Weili WANG, Qianbin CHEN, Lun TANG. Online Anomaly Detection for Virtualized Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
Citation: Weili WANG, Qianbin CHEN, Lun TANG. Online Anomaly Detection for Virtualized Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531

虚拟网络切片中的在线异常检测算法研究

doi: 10.11999/JEIT190531
基金项目: 国家自然科学基金(61571073),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
    作者简介:

    王威丽:女,1994年生,博士生,研究方向为虚拟化网络切片、人工智能算法等

    陈前斌:男,1967年生,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络

    唐伦:男,1973年生,教授,博士生导师,研究方向为新一代无线通信网络、异构蜂窝网络

    通讯作者:

    陈前斌 cqb@cqupt.edu.cn

  • 中图分类号: TN929.5

Online Anomaly Detection for Virtualized Network Slicing

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要:

    在虚拟化网络切片场景中,底层物理网络中一个物理节点(PN)或一条物理链路(PL)的异常会造成多个网络切片的性能退化。因网络中每个时刻都会产生新的测量数据,该文设计了两种在线异常检测算法实时监督物理网络的工作状态。首先,该文提出了一种基于在线一类支持向量机(OCSVM)的PN异常检测算法,该算法可根据每个时刻虚拟节点(VNs)的新测量数据进行模型参数的更新而不需要任何标签数据;其次,基于虚拟链路两端点间测量数据的自然相关性,该文提出基于在线典型相关分析(CCA)的PL异常检测算法,该算法只需要少量标签数据就可以准确分析出PL的异常情况。仿真结果验证了该文所提在线异常检测算法的有效性和鲁棒性。

  • 图  1  网络切片管理示意图

    图  2  在线OCSVM算法和经典OCSVM算法的性能对比图

    图  3  在线OCSVM算法中${{w}}$$\rho $的收敛过程

    图  4  在线CCA算法和CCA算法的性能对比图

    图  5  在线异常检测算法在真实网络数据集上的性能对比图

    表  1  基于在线OCSVM的PN异常检测算法

     初始化:总迭代次数$T$,特征空间维度$D$,随机初始化PN $q(0 \le q \le Q)$的估计值${{{w}}_q}(0),{\rho _q}(0)$和${\xi _q}(0)$
     (1) for $t = 0,1,2,···,T$ do
     (2) PN $q$产生新的训练样本${{{x}}_q}(t)$,使用随机近似函数计算$\varphi ({{{x}}_q}(t))$的近似值${z_q}(t)$
     (3) 根据式(8a)、式(8b)和式(8c)计算${{\text{∇}} _{ { {{w} }_q} } }{f_q}(t),{{\text{∇}}_{ {\rho _q} } }{f_q}(t)$和${{\text{∇}} _{ {\xi _q} } }{f_q}(t)$
     (4) 根据式(7a)、式(7b)和式(7c)计算${{{w}}_q}(t),{\rho _q}(t)$和${\xi _q}(t)$
     (5) 计算$g({{{x}}_q}(t)) = {\rm{sgn}} ({{{w}}^{\rm{T}}}(t) \cdot {{{z}}_q}(t) - \rho (t))$
     (6)  if $g({{{x}}_q}(t)) = = 1$ then
     (7)   判定当前时刻PN $q$为正常节点,更新参数${{{w}}_q}(t),{\rho _q}(t)$和${\xi _q}(t)$
     (8)  else
     (9)  判定当前时刻PN $q$为异常节点,保留$t - 1$时刻参数值,丢弃当前值
     (10) end for
    下载: 导出CSV

    表  2  基于在线CCA的PL异常检测算法

     初始化:初始标签采样个数$t$,映射到物理路径${\rm{P}}{{\rm{N}}_m}\mathop \to \limits^{{\rm{P}}{{\rm{L}}_{m,m + 1}}} {\rm{P}}{{\rm{N}}_{m + 1}}$两端的${\rm{VN}}{{\rm{F}}_l}$和${\rm{VN}}{{\rm{F}}_{l + 1}}$测量数据${{U}}(t)$和${{Y}}(t)$,控制门限值$T_{r,{\rm{cl}}}^2$,迭
     代次数$T$
     (1)计算${{U}}(t)$和${{Y}}(t)$的协方差矩阵和均值向量:${{{\varSigma}} _{{{U}}(t)}},{{{\varSigma}} _{{{Y}}(t)}},{{{\varSigma}} _{{{U}}(t){{Y}}(t)}},[{c_1}(t)\;...\;{c_p}(t)]$和$[{d_1}(t)\;...\;{d_q}(t)]$
     (2) for $t = t + 1:T$ do
     (3) 根据式(16)、式(17)计算${{{\varSigma}} _{{{U}}(t)}}$, ${{{\varSigma}} _{{{Y}}(t)}}$和${{{\varSigma}} _{{{U}}(t){{Y}}(t)}}$
     (4) 根据式(11)对矩阵${{K}}(t)$进行奇异值分解
     (5) 根据式(12)计算典型相关变量${{J}}(t)$和${{L}}(t)$
     (6) 根据式(13)生成最优异常检测残差${{r}}(t)$ 并建立${T^2}$检验:$T_{r(t)}^2 = {{{r}}^{\rm{T}}}(t){{\varSigma}} _{r(t)}^{ - 1}{{r}}(t)$
     (7) if $T_{r(t)}^2 \le T_{r,{\rm{cl} } }^2$ then
     (8)   判定${\rm{P}}{{\rm{L}}_{m,m + 1}}$为正常链路,更新协方差矩阵和均值向量
     (9)  else
     (10)   判定${\rm{P}}{{\rm{L}}_{m,m + 1}}$为异常链路,保留上一时刻协方差矩阵和均值向量,丢弃当前值
     (11) end for
    下载: 导出CSV

    表  3  仿真参数

    参数数值
    每条SFC包含的VNF数4~6个
    EMBB(到达率,数据包大小)(10 packets/s,200 kbit/packets)
    URLLC(到达率,数据包大小)(100 packets/s,10 kbit/packets)
    MMTC(到达率,数据包大小)(500 packets/s,1 kbit/packets)
    特征空间维度($D$)100
    初始标签采样个数($t$)10
    下载: 导出CSV
  • ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network Slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/MCOM.2017.1600935
    ELAYOUBI S E, JEMAA S B, ALTMAN Z, et al. 5G RAN slicing for verticals: Enablers and challenges[J]. IEEE Communications Magazine, 2019, 57(1): 28–34. doi: 10.1109/MCOM.2018.1701319
    OI A, ENDOU D, MORIYA T, et al. Method for estimating locations of service problem causes in service function chaining[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2016. doi: 10.1109/GLOCOM.2015.7416993.
    YOUSAF F Z, BREDEL M, SCHALLER S, et al. NFV and SDN - key technology enablers for 5G networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2468–2478. doi: 10.1109/JSAC.2017.2760418
    陈前斌, 杨友超, 周钰, 等. 基于随机学习的接入网服务功能链部署算法[J]. 电子与信息学报, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310

    CHEN Qianbin, YANG Youchao, ZHOU Yu, et al. Deployment algorithm of service function chain of access network based on stochastic learning[J]. Journal of Electronics &Information Technology, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310
    COTRONEO D, NATELLA R, and ROSIELLO S. A fault correlation approach to detect performance anomalies in virtual network function chains[C]. The 2017 IEEE 28th International Symposium on Software Reliability Engineering, Toulouse, France, 2017. doi: 10.1109/ISSRE.2017.12.
    SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443–1471. doi: 10.1162/089976601750264965
    JIANG Qingchao and YAN Xuefeng. Multimode process monitoring using variational bayesian inference and canonical correlation analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814–1824. doi: 10.1109/TASE.2019.2897477
    LI Xiaocan, XIE Kun, WANG Xin, et al. Online internet anomaly detection with high accuracy: A fast tensor factorization solution[C]. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 2019: 1900–1908. doi: 10.1109/INFOCOM.2019.8737562.
    DE LA OLIVA A, LI Xi, COSTA-PEREZ X, et al. 5G-TRANSFORMER: Slicing and orchestrating transport networks for industry verticals[J]. IEEE Communications Magazine, 2018, 56(8): 78–84. doi: 10.1109/MCOM.2018.1700990
    MIAO Xuedan, LIU Ying, ZHAO Haiquan, et al. Distributed online one-class support vector machine for anomaly detection over networks[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1475–1488. doi: 10.1109/TCYB.2018.2804940
    RAHIMI A and RECHT B. Random features for large-scale kernel machines[C]. The 20th International Conference on Neural Information Processing Systems, Charlotte, USA, 2007.
    SHALEV-SHWARTZ S, SINGER Y, and SREBRO N. Pegasos: Primal estimated sub-GrAdient sOlver for SVM[C]. The 24th International Conference on Machine learning, Corvallis, USA, 2007. doi: 10.1145/1273496.1273598.
    JIANG Qingchao, DING S X, WANG Yang, et al. Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8148–8157. doi: 10.1109/TIE.2017.2698422
    任驰, 马瑞涛. 网络切片: 构建可定制化的5G网络[J]. 中兴通讯技术, 2018, 24(1): 26–30. doi: 10.3969/j.issn.1009-6868.2018.01.006

    REN Chi and MA Ruitao. Network slicing: Building customizable 5G network[J]. ZTE Technology Journal, 2018, 24(1): 26–30. doi: 10.3969/j.issn.1009-6868.2018.01.006
    XIE Kun, LI Xiaocan, WANG Xin, et al. On-line anomaly detection with high accuracy[J]. IEEE/ACM transactions on networking, 2018, 26(3): 1222–1235. doi: 10.1109/TNET.2018.2819507
    FU Songwei and ZHANG Yan. The due/packet-delivery (v. 2015-04-01)[EB/OL]. https://doi.org/10.15783/C7NP4Z, 2015.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  2722
  • HTML全文浏览量:  967
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2020-02-12
  • 网络出版日期:  2020-03-03
  • 刊出日期:  2020-06-22

目录

    /

    返回文章
    返回