KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi: 10.1109/79.526899
|
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
|
ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
|
MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/tsp.2005.850882
|
HU Na, YE Zhongfu, XU Xu, et al. DOA estimation for sparse array via sparse signal reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 760–773. doi: 10.1109/TAES.2013.6494379
|
WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Two sparse-based methods for off-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87–95. doi: 10.1016/j.sigpro.2017.07.004
|
郭英, 东润泽, 张坤峰, 等. 基于稀疏贝叶斯学习的多跳频信号DOA估计方法[J]. 电子与信息学报, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435GUO Ying, DONG Runze, ZHANG Kunfeng, et al. Direction of arrival estimation for multiple frequency hopping signals based on sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435
|
XU G and KAILATH T. Direction-of-arrival estimation via exploitation of cyclostationary-a combination of temporal and spatial processing[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1775–1786. doi: 10.1109/78.143448
|
XIN Jingmin and SANO A. MSE-based regularization approach to direction estimation of coherent narrowband signals using linear prediction[J]. IEEE Transactions on Signal Processing, 2001, 49(11): 2481–2497. doi: 10.1109/78.960396
|
LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J]. IEEE Transactions on Signal processing, 2011, 59(9): 4256–4270. doi: 10.1109/tsp.2011.2159214
|
HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435–439. doi: 10.1109/LSP.2014.2358084
|
BUTTON M D, GARDINER J G, and GLOVER I A. Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 551–560. doi: 10.1109/tvt.2002.1002503
|
BLACKARD K L, RAPPAPORT T S, and BOSTIAN C W. Measurements and models of radio frequency impulsive noise for indoor wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1993, 11(7): 991–1001. doi: 10.1109/49.233212
|
NIKIAS C L and SHAO Min. Signal Processing with Alpha-Stable Distributions and Applications[M]. New York: Wiley & Sons, 1995.
|
JIN Fangxiao, QIU Tianshuang, LUAN Shengyang, et al. Joint Estimation of the DOA and the number of sources for wideband signals using cyclic correntropy[J]. IEEE Access, 2019, 7: 42482–42494. doi: 10.1109/ACCESS.2019.2904287
|
LUAN Shengyang, QIU Tianshuang, ZHU Yongjie, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503–508. doi: 10.1016/j.sigpro.2015.09.023
|
BLUMENSATH T and DAVIES M E. Normalized iterative hard thresholding: Guaranteed stability and performance[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 298–309. doi: 10.1109/JSTSP.2010.2042411
|