高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lempel-Ziv-Welch压缩数据的误码纠正

王刚 靳彦青 彭华 张光伟

王刚, 靳彦青, 彭华, 张光伟. Lempel-Ziv-Welch压缩数据的误码纠正[J]. 电子与信息学报, 2020, 42(6): 1436-1443. doi: 10.11999/JEIT190520
引用本文: 王刚, 靳彦青, 彭华, 张光伟. Lempel-Ziv-Welch压缩数据的误码纠正[J]. 电子与信息学报, 2020, 42(6): 1436-1443. doi: 10.11999/JEIT190520
Gang WANG, Yanqing JIN, Hua PENG, Guangwei ZHANG. Error Correction of Lempel-Ziv-Welch Compressed Data[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1436-1443. doi: 10.11999/JEIT190520
Citation: Gang WANG, Yanqing JIN, Hua PENG, Guangwei ZHANG. Error Correction of Lempel-Ziv-Welch Compressed Data[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1436-1443. doi: 10.11999/JEIT190520

Lempel-Ziv-Welch压缩数据的误码纠正

doi: 10.11999/JEIT190520
基金项目: 国家自然科学基金(61501516, 61572518)
详细信息
    作者简介:

    王刚:男,1981年生,副教授,研究方向为信号分析、信息处理、模式识别

    靳彦青:女,1983年生,工程师,研究方向为移动通信

    彭华:男,1973年生,教授,研究方向为通信信号处理、软件无线电

    张光伟:男,1984年生,讲师,研究方向为信息安全

    通讯作者:

    彭华 phzttyw@126.com

  • 中图分类号: TP911.21

Error Correction of Lempel-Ziv-Welch Compressed Data

Funds: The National Natural Science Foundation of China (61501516, 61572518)
  • 摘要:

    无损数据压缩系统在通信传输过程中容易出现错误,会导致码表和重构数据出错并引发误码扩散,影响其在文件系统和无线通信中的应用。针对在通用编码领域广泛使用的无损数据压缩算法LZW,该文分析并利用LZW压缩数据的冗余,通过选取部分编码码字并动态调整其对应的被压缩符号串的长度来携带校验码,提出了具有误码纠正能力的无损数据压缩方法CLZW。该方法不用额外添加数据,也不改变数据规格和编码规则,与标准LZW算法兼容。实验结果表明,用该方法压缩的文件仍然能用标准LZW解码器解压,且该方法可以对LZW压缩数据的误码进行有效纠正。

  • 图  1  CLZW压缩数据中消息比特的嵌入

    图  2  LZW压缩数据的误码纠正

    图  3  纠错率与BER的关系

    表  1  分别用LZW与CLZW压缩坎特伯雷语料库的对比(K=3, L=1)

    文件名$|T|$$|T'|$$|T{'_M}|$$l$${l_M}$$|T{'_M}|$–$|T'|$$|M|$RRM
    alice2915208972322761943.653.23387239820.0535380.055059
    cp2460312228128563.923.496287160.0513580.058554
    fields11150531655804.113.662643220.0496610.060572
    ptt551321670228739615.785.30373342950.0531550.061158
    sum3824031940326052.492.1766513560.0208200.043827
    下载: 导出CSV

    表  2  分别用LZW与CLZW压缩坎特伯雷语料库的对比

    文件名$|T|$$|T'|$$|T{'_M}|$$l$${l_M}$$|T{'_M}|$–$|T'|$$|M|$RRM
    alice2915208972322761943.653.23387241130.0535380.056871
    cp2460312228128563.923.496287580.0513580.061989
    fields11150531655804.113.662643310.0496610.062265
    ptt551321670228739615.785.30373346140.0531550.065700
    sum3824031940326052.492.1766513700.0208200.044279
    下载: 导出CSV

    表  3  1≤ K ≤5且1≤ L ≤2携带消息量RM的实验结果

    文件名L=1L=2
    K=1K=2K=3K=4K=5K=1K=2K=3K=4K=5
    alice290.0815770.0777390.0550590.0386750.0243770.1405380.1009490.0622750.0372120.023465
    cp0.0773340.0806860.0585540.0401880.0253690.1263590.0968840.0587580.0408930.025621
    fields0.0797250.0775870.0605720.03987610.0266600.1166420.08663150.0643850.0403850.028232
    ptt50.0830420.0805290.0611580.0409190.0308430.1309910.1047480.0699760.0434310.030271
    sum0.0734400.0721350.0438270.0263550.0184690.0729160.0559850.0382700.0297500.016390
    下载: 导出CSV
  • BERTINO E, CHOO K K R, GEORGAKOPOLOUS D, et al. Internet of Things (IoT): Smart and secure service delivery[J]. ACM Transactions on Internet Technology, 2016, 16(4): 22. doi: 10.1145/3013520
    TALWANA J C and HUANG Jianhua. Smart world of Internet of Things (IoT) and its security concerns[C]. 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 2016: 240–245. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.64.
    WEN Lulu, ZHOU Kaile, YANG Shanlin, et al. Compression of smart meter big data: A survey[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 59–69. doi: 10.1016/j.rser.2018.03.088
    CHENG Ledan, GUO Songtao, WANG Ying, et al. Lifting wavelet compression based data aggregation in big data wireless sensor networks[C]. The 22nd IEEE International Conference on Parallel and Distributed Systems, Wuhan, China, 2016: 561–568. doi: 10.1109/ICPADS.2016.0080.
    徐金甫, 刘露, 李伟, 等. 一种基于阵列配置加速比模型的无损压缩算法[J]. 电子与信息学报, 2018, 40(6): 1492–1498. doi: 10.11999/JEIT170900

    XU Jinfu, LIU Lu, LI Wei, et al. A new lossless compression algorithm based on array configuration speedup model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1492–1498. doi: 10.11999/JEIT170900
    姚军财, 刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法[J]. 电子与信息学报, 2016, 38(5): 1202–1210. doi: 10.11999/JEIT150848

    YAO Juncai and LIU Guizhong. An adaptive quantization method of image based on the contrast sensitivity characteristics of human visual system[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1202–1210. doi: 10.11999/JEIT150848
    YANG J and BHATTACHARYA K. Combining image compression with digital image correlation[J]. Experimental Mechanics, 2019, 59(5): 629–642. doi: 10.1007/s11340-018-00459-y
    BLASCH E, CHEN Huamei, IRVINE J M, et al. Prediction of compression-induced image interpretability degradation[J]. Optical Engineering, 2018, 57(4): 043108. doi: 10.1117/1.OE.57.4.043108
    王刚, 彭华, 唐永旺. 破损压缩文件的修复还原[J]. 电子与信息学报, 2019, 41(8): 1831–1837. doi: 10.11999/JEIT180942

    WANG Gang, PENG Hua, and TANG Yongwang. Repair and restoration of corrupted compressed files[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1831–1837. doi: 10.11999/JEIT180942
    罗瑜, 张珍珍. 一种快速的纹理预测和混合哥伦布的无损压缩算法[J]. 电子与信息学报, 2018, 40(1): 137–142. doi: 10.11999/JEIT170305

    LUO Yu and ZHANG Zhenzhen. A fast-lossless compression using texture prediction and mixed golomb coding[J]. Journal of Electronics &Information Technology, 2018, 40(1): 137–142. doi: 10.11999/JEIT170305
    WELCH T A. A technique for high-performance data compression[J]. Computer, 1984, 17(6): 8–19. doi: 10.1109/MC.1984.1659158
    WANG Digang, ZHAO Xiaoqun, and SUN Qingquan. Novel fault-tolerant decompression method of corrupted huffman files[J]. Wireless Personal Communications, 2018, 102(4): 2555–2574. doi: 10.1007/s11277-018-5277-5
    DRMOTA M and SZPANKOWSKI W. Redundancy of lossless data compression for known sources by analytic methods[J]. Foundations and Trends® in Communications and Information Theory, 2017, 13(4): 277–417. doi: 10.1561/0100000090
    KOGA H and YAMAMOTO H. Asymptotic properties on codeword lengths of an optimal FV code for general sources[J]. IEEE Transactions on Information Theory, 2005, 51(4): 1546–1555. doi: 10.1109/TIT.2005.844098
    FRENKEL S, KOPEETSKY M, and MOLOTKOVSKI R. Lempel-Ziv-welch compression algorithm with exponential decay[C]. The 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management, Beer-Sheva, Israel, 2016: 616–619. doi: 10.1109/SMRLO.2016.108.
    李从鹤, 郑辉. 一种用于文本压缩的信源容错译码算法[J]. 无线电通信技术, 2006, 32(2): 36–38, 64. doi: 10.3969/j.issn.1003-3114.2006.02.013

    LI Conghe and ZHENG Hui. A fault-tolerance decoding algorithm for text compression[J]. Radio Communications Technology, 2006, 32(2): 36–38, 64. doi: 10.3969/j.issn.1003-3114.2006.02.013
    KLEIN S T and SHAPIRA D. Practical fixed length Lempel-Ziv coding[J]. Discrete Applied Mathematics, 2014, 163: 326–333. doi: 10.1016/j.dam.2013.08.022
    ZHANG Jie, YANG Enhui, and KIEFFER J C. A universal grammar-based code for lossless compression of binary trees[J]. IEEE Transactions on Information Theory, 2014, 60(3): 1373–1386. doi: 10.1109/TIT.2013.2295392
    KWON B, GONG M, and LEE S. Novel error detection algorithm for LZSS compressed data[J]. IEEE Access, 2017, 5: 8940–8947. doi: 10.1109/ACCESS.2017.2704900
    KITAKAMI M and KAWASAKI T. Burst error recovery method for LZSS coding[J]. IEICE Transactions on Information and Systems, 2009, 92(12): 2439–2444. doi: 10.1587/transinf.e92.d.2439
    PEREIRA Z C, PELLENZ M E, SOUZA R D, et al. Unequal error protection for LZSS compressed data using Reed-Solomon codes[J]. IET Communications, 2007, 1(4): 612–617. doi: 10.1049/iet-com:20060530
    KEMPA D and KOSOLOBOV D. LZ-end parsing in compressed space[C]. 2017 Data Compression Conference, Snowbird, USA, 2017: 350-359.
    DO H H, JANSSON J, SADAKANE K, et al. Fast relative Lempel-Ziv self-index for similar sequences[J]. Theoretical Computer Science, 2014, 532: 14–30. doi: 10.1016/j.tcs.2013.07.024
    REED I S and SOLOMON G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300–304. doi: 10.1137/0108018
    LOUCHARD G and SZPANKOWSKI W. On the average redundancy rate of the Lempel-Ziv code[J]. IEEE Transactions on Information Theory, 1997, 43(1): 2–8. doi: 10.1109/18.567640
    DAS S, BULL D M, and WHATMOUGH P N. Error-resilient design techniques for reliable and dependable computing[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(1): 24–34. doi: 10.1109/tdmr.2015.2389038
    The Canterbury corpus[EB/OL]. http://corpus.canterbury.ac.nz/descriptions/#cantrbry, 2018.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  2921
  • HTML全文浏览量:  1146
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-11
  • 修回日期:  2020-03-25
  • 网络出版日期:  2020-03-27
  • 刊出日期:  2020-06-22

目录

    /

    返回文章
    返回