高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知高反光成像技术研究

范剑英 马明阳 赵首博

范剑英, 马明阳, 赵首博. 基于压缩感知高反光成像技术研究[J]. 电子与信息学报, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
引用本文: 范剑英, 马明阳, 赵首博. 基于压缩感知高反光成像技术研究[J]. 电子与信息学报, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
Jianying FAN, Mingyang MA, Shoubo ZHAO. Research on High Reflective Imaging Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
Citation: Jianying FAN, Mingyang MA, Shoubo ZHAO. Research on High Reflective Imaging Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512

基于压缩感知高反光成像技术研究

doi: 10.11999/JEIT190512
基金项目: 国家自然科学基金(61801148, 61803128),黑龙江省自然科学基金(QC2016067)
详细信息
    作者简介:

    范剑英:男,1963年生,教授,硕士生导师,研究方向为光电检测、数字图像与重建

    马明阳:男,1993年生,硕士生,研究方向为压缩感知与数字信号处理

    赵首博:男,1985年生,副教授,硕士生导师,研究方向为精密光电测量、计算视觉成像

    通讯作者:

    赵首博 shoubozh@126.com

  • 中图分类号: TN911.73; TN957.52

Research on High Reflective Imaging Technology Based on Compressed Sensing

Funds: The National Natural Science Foundation of China (61801148, 61803128), The Scientific Research Foundation of Heilongjiang Province (QC2016067)
  • 摘要:

    高反光物体成像时反射的光强容易超出传感器接收光强的最大量化值,使得采集图像部分区域图像失真,严重影响信息传递。为了改善高反光成像饱和区域中数据丢失的状况,该文结合压缩感知这一新的采样理论提出基于压缩感知高反光成像方法,利用特定测量矩阵对目标图像进行线性采样,将CCD图像传感器的单个光强采样值与测量矩阵中的分布数据对应结合,对整合后的数据用算法进行恢复重建实现被测目标在高光环境中成像。以峰值信噪比和灰度直方图作为客观评定标准。实验表明,该成像方法鲁棒性较强、可行性较高,直方图检测饱和像素占比为0%,峰值信噪比为58.37 dB实现了在高光环境下不含饱和光成像,为压缩感知在成像应用中提供了新的方向。

  • 图  1  压缩感知框架图

    图  2  不同环境下成像状态

    图  3  图像分块

    图  4  CCD所采集含高反光图像

    图  5  去除成像中高亮区域效果

    图  6  压缩感知不同恢复算法去除饱和光成像

    图  7  压缩感知去饱和光成像光路图

    图  8  高亮光环境下采集的被测目标信息

    图  9  原始图像和压缩感知高反光成像直方图

    表  1  不同采样率下两种恢复算法的MSE值与PSNR值

    CS采样率OMP算法SAMP算法
    MSEPSNRMSEPSNR
    0.300.015866.14810.016665.9403
    0.350.015066.37390.015466.2512
    0.400.014366.56250.014266.6061
    0.450.013966.71490.013566.8149
    0.500.013666.79280.013366.9078
    下载: 导出CSV
  • 赵首博, 曲兴华, 冯维, 等. 成像前光学调制系统的眩光测量[J]. 光电工程, 2016, 43(1): 13–17. doi: 10.3969/j.issn.1003-501X.2016.01.003

    ZHAO Shoubo, QU Xinghua, FENG Wei, et al. A measurement method for glare based on the Optical modulation system before image formation[J]. Opto-Electronic Engineering, 2016, 43(1): 13–17. doi: 10.3969/j.issn.1003-501X.2016.01.003
    范剑英, 刘力源, 赵首博. 电机铜排表面毛刺缺陷检测技术研究[J]. 仪器仪表学报, 2019, 40(3): 14–22. doi: 10.19650/j.cnki.cjsi.J1804559

    FAN Jianying, LIU Liyuan, and ZHAO Shoubo. Research on detection technology of burr defects in motor copper[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 14–22. doi: 10.19650/j.cnki.cjsi.J1804559
    ZHAO Shoubo, MA Mingyang, and GUO Cong. Accurate Pixel-to-Pixel alignment method with Six-Axis adjustment for computational photography[J]. IEEE Photonics Journal, 2018, 10(3): 6802416. doi: 10.1109/jphot.2018.2839093
    JIANG Hongzhi, ZHAO Huijie, and LI Xudong. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces[J]. Optics and Lasers in Engineering, 2012, 50(10): 1484–1493. doi: 10.1016/j.optlaseng.2011.11.021
    ZHAO Shoubo, ZHANG Fumin, QU Xinghua, et al. Removal of parasitic image due to metal specularity based on digital micromirror device camera[J]. Optical Engineering, 2014, 53(6): 063105. doi: 10.1117/1.oe.53.6.063105
    YAN Qingsen, ZHU Yu, and ZHANG Yanning. Robust artifact-free high dynamic range imaging of dynamic scenes[J]. Multimedia Tools and Applications, 2019, 78(9): 11487–11505. doi: 10.1007/s11042-018-6625-x
    KALANTARI N K, SHECHTMAN E, BARNES C, et al. Patch-based high dynamic range video[J]. ACM Transactions on Graphics, 2013, 32(6): No. 202. doi: 10.1145/2508363.2508402
    ZHAO Shoubo, LIU Liyuan, and MA Mingyang. Adaptive high-dynamic range three-dimensional shape measurement using DMD camera[J]. IEEE Access, 2019, 7: 67934–67943. doi: 10.1109/access.2019.2918843
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    ELDAR Y C, KUTYNIOK G. Compressed Sensing: Theory and Applications[M]. Cambridge: Cambridge University Press, 2012: 1289–1306. doi: 10.1017/CBO9780511794308.
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    RISTOBAL-HUERTA A, POOT D H J, VOGEL M W, et al. Compressed sensing 3D-GRASE for faster high-resolution MRI[J]. Magnetic Resonance in Medicine, 2019, 82(3): 984–999. doi: 10.1002/mrm.27789
    ZHU Xiaoxiang and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based tomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098
    王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145

    WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
    金艳, 周磊, 姬红兵. 基于稀疏时频分布的跳频信号参数估计[J]. 电子与信息学报, 2018, 40(3): 663–669. doi: 10.11999/JEIT170525

    JIN Yan, ZHOU Lei, and JI Hongbing. Parameter estimation of frequency-hopping signals based on sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2018, 40(3): 663–669. doi: 10.11999/JEIT170525
    FAZEL F, FAZEL M, and STOJANOVIC M. Random access compressed sensing for energy-efficient underwater sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1660–1670. doi: 10.1109/jsac.2011.110915
    孙玉宝, 李欢, 吴敏, 等. 基于图稀疏正则化多测量向量模型的高光谱压缩感知重建[J]. 电子与信息学报, 2014, 36(12): 2942–2948. doi: 10.3724/SP.J.1146.2014.00566

    SUN Yubao, LI Huan, WU Min, et al. Compressed sensing reconstruction of hyperspectral image using the graph sparsity regularized multiple measurement vector model[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2942–2948. doi: 10.3724/SP.J.1146.2014.00566
    LIAO Wenchao, HSIEH J, WANG Chengming, et al. Compressed sensing spectral domain optical coherence tomography with a hardware sparse-sampled camera[J]. Optics Letters, 2019, 44(12): 2955–2958. doi: 10.1364/OL.44.002955
    DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/msp.2007.914730
    余慧敏, 方广有. 压缩感知理论在探地雷达三维成像中的应用[J]. 电子与信息学报, 2010, 32(1): 12–16. doi: 10.3724/SP.J.1146.2009.00040

    YU Huimin and FANG Guangyou. Research on compressive sensing based 3D imaging method applied to ground penetrating radar[J]. Journal of Electronics &Information Technology, 2010, 32(1): 12–16. doi: 10.3724/SP.J.1146.2009.00040
    庄佳衍, 陈钱, 何伟基, 等. 基于压缩感知的动态散射成像[J]. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501

    ZHUANG Jiayan, CHEN Qian, HE Weiji, et al. Imaging through dynamic scattering media with compressed sensing[J]. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015
    LI Yunhui, WANG Xiaodong, WANG Zhi, et al. Modeling and image motion analysis of parallel complementary compressive sensing imaging system[J]. Optics Communications, 2018, 423: 100–110. doi: 10.1016/j.optcom.2018.04.018
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2572
  • HTML全文浏览量:  1004
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 修回日期:  2020-01-17
  • 网络出版日期:  2020-02-17
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回