高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多编队目标先后出现时的无先验信息跟踪方法

熊伟 顾祥岐 徐从安 崔亚奇

熊伟, 顾祥岐, 徐从安, 崔亚奇. 多编队目标先后出现时的无先验信息跟踪方法[J]. 电子与信息学报, 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508
引用本文: 熊伟, 顾祥岐, 徐从安, 崔亚奇. 多编队目标先后出现时的无先验信息跟踪方法[J]. 电子与信息学报, 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508
Wei XIONG, Xiangqi GU, Congan XU, Yaqi CUI. Tracking Method without Prior Information when Multi-group Targets Appear Successively[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508
Citation: Wei XIONG, Xiangqi GU, Congan XU, Yaqi CUI. Tracking Method without Prior Information when Multi-group Targets Appear Successively[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508

多编队目标先后出现时的无先验信息跟踪方法

doi: 10.11999/JEIT190508
基金项目: 国家自然科学基金(91538201, 61790550)
详细信息
    作者简介:

    熊伟:男,1978年生,教授,博士生导师,研究方向为多传感器信息融合

    顾祥岐:男,1995年生,硕士,研究方向为信息融合、雷达数据处理

    徐从安:男,1987年生,讲师,研究方向为信息融合、大数据技术

    崔亚奇:男,1987年生,讲师,研究方向为深度学习、多传感器信息融合

    通讯作者:

    顾祥岐 guxiangqi1314@163.com

  • 中图分类号: TN953

Tracking Method without Prior Information when Multi-group Targets Appear Successively

Funds: The National Natural Science Foundation of China (91538201, 61790550)
  • 摘要:

    针对多编队机动目标先后出现时的跟踪问题,该文提出了一种基于交互式多模型高斯混合概率假设密度滤波(IMM-GM-PHD)算法的无先验信息跟踪方法。首先,在IMM-GM-PHD算法预测过程完成的基础上,引入密度检测机制,利用相关域为所有预测高斯分量挑选有效量测,结合密度聚类(DBSCAN)算法检测是否出现新编队目标。其次,在IMM-GM-PHD算法状态更新完成的基础上,利用更新高斯分量的组成情况完成模型概率的更新。最后,在状态估计优化过程中,结合编队目标的特点,加入相似度判别技术,利用杰森-香农(JS)散度度量高斯分量间的相似度,剔除没有相似分量的高斯分量,进一步优化估计结果。仿真结果表明,该文方法能够快速有效地跟踪非同时出现的多编队机动目标,具有较好的跟踪性能。

  • 图  1  流程图

    图  2  真实运动轨迹和量测数据

    图  3  IMM-GM-PHD算法单次仿真的状态估计

    图  4  本文算法单次仿真的状态估计

    图  5  IMM-GM-PHD算法的目标个数估计

    图  6  本文算法的目标个数估计

    图  7  OSPA距离比较

    图  8  IMM-GM-PHD算法的目标个数估计(λ=1)

    图  9  本文算法的目标个数估计(λ=1)

    图  10  IMM-GM-PHD算法的目标个数估计(λ=50)

    图  11  本文算法的目标个数估计(λ=50)

    图  12  真实运动轨迹和量测数据

    图  13  本文算法单次仿真的状态估计

    图  14  本文算法的目标个数估计

    表  1  不同杂波密度下平均OSPA距离比较

    算法杂波密度
    ${\rm{\lambda }} = 1$${\rm{\lambda }} = 10$${\rm{\lambda }} = 50$
    IMM-GM-PHD算法29.75532.12944.609
    本文算法21.82128.61743.996
    下载: 导出CSV
  • YU Yihua. Consensus-based distributed linear filter for target tracking with uncertain noise statistics[J]. IEEE Sensors Journal, 2017, 17(15): 4875–4885. doi: 10.1109/JSEN.2017.2712702
    但波, 姜永华, 李敬军, 等. 基于空时融合隐马尔科夫模型的舰艇编队目标识别方法[J]. 电子与信息学报, 2015, 37(4): 926–932. doi: 10.11999/JEIT140589

    DAN Bo, JIANG Yonghua, LI Jingju, et al. Ship formation target recognition based on spatial and temporal fusion hidden markov model[J]. Journal of Electronics &Information Technology, 2015, 37(4): 926–932. doi: 10.11999/JEIT140589
    FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/tsp.2010.2101064
    LAN Jian and LI X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2450–2463. doi: 10.1109/tsp.2014.2309561
    王婷婷, 缪礼锋, 程然. 海上低空突防群目标跟踪的IMM-Bayesian实现[J]. 海军航空工程学院学报, 2018, 33(1): 111–118. doi: 10.7682/j.issn.1673-1522.2018.01.003

    WANG Tingting, MIAO Lifeng, and CHENG Ran. IMM-bayesian tracking algorithm for the sea surface low-altitude penetration group targets[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(1): 111–118. doi: 10.7682/j.issn.1673-1522.2018.01.003
    何友, 修建娟, 关欣, 等. 雷达数据处理及应用[M]. 北京: 电子工业出版社, 2013: 191–201.

    HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. Beijing: Publishing House of Electronics Industry, 2013: 191–201.
    王聪, 王海鹏, 何友, 等. 基于ICP的稳态部分可辨编队目标精细跟踪算法[J]. 北京航空航天大学学报, 2017, 43(6): 1123–1131. doi: 10.13700/j.bh.1001-5965.2016.0421

    WANG Cong, WANG Haipeng, HE You, et al. Refined tracking algorithm for steady partly resolvable group targets based on ICP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1123–1131. doi: 10.13700/j.bh.1001-5965.2016.0421
    WANG Haipeng, SUN Weiwei, JIA Shuyi, et al. A group target track correlation algorithm based on systematic error estimation[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–8. doi: 10.1109/RADAR.2016.8059386.
    MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/tsp.2006.881190
    VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1225. doi: 10.1109/taes.2005.1561884
    朱友清, 周石琳, 高贵. 结合聚类的GM-PHD滤波器辐射源群目标跟踪[J]. 系统工程与电子技术, 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03

    ZHU Youqing, ZHOU Shilin, and GAO Gui. Emitter group targets tracking using GM-PHD filter combined with clustering[J]. Systems Engineering and Electronics, 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03
    WOOD T M. Interacting methods for manoeuvre handling in the GM-PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3021–3025. doi: 10.1109/TAES.2011.6034685
    WANG Yun, HU Guoping, and LI Zhenxing. Tracking of group targets using multiple models GGIW-PHD algorithm based on best-fitting Gaussian approximation and strong tracking filter[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 331–343. doi: 10.1177/0954410016684359
    GRANSTROM K and ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678–692. doi: 10.1109/tsp.2012.2230171
    朱书军, 刘伟峰, 崔海龙. 基于广义标签多伯努利滤波的可分辨群目标跟踪算法[J]. 自动化学报, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334

    ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334
    SAEEDI EMADI H and MAZINANI S M. A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks[J]. Wireless Personal Communications, 2018, 98(2): 2025–2035. doi: 10.1007/s11277-017-4961-1
    LIN J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145–151. doi: 10.1109/18.61115
    VAN ERVEN T and HARREMOS P. Rényi divergence and Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2014, 60(7): 3797–3820. doi: 10.1109/TIT.2014.2320500
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/tsp.2008.920469
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  3629
  • HTML全文浏览量:  1023
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 修回日期:  2020-03-22
  • 网络出版日期:  2020-04-09
  • 刊出日期:  2020-07-23

目录

    /

    返回文章
    返回