Modeling and Simulating of Microwave Humidity and Temperature Sounder Onboard the FY-3(D) Satellite
-
摘要:
针对风云三号卫星微波湿温度计,该文建立了全功率式微波辐射计系统的仿真模型,重点对热辐射噪声源、混频器、低噪放、滤波器与检波器等关键性器件进行了参数化建模。从信号处理的角度对全功率式微波辐射计的工作过程进行了模拟,并对仿真系统的输出功率、灵敏度和线性度进行评估与分析。通过与实际仪器的测试结果对比,验证了所提仿真模型的正确性。
-
关键词:
- 风云三号(D)气象卫星 /
- 微波湿温度计 /
- 全功率式微波辐射计 /
- 毫米波系统建模 /
- 计算机仿真
Abstract:A simulation model of total power microwave radiometer is developed for the microwave humidity and temperature sounder onboard the FY-3 satellite. The key components such as mixer, low noise amplifier, local oscillator, filter and detector are parametrically modeled. The model is studied from the aspect of signal processing, and dynamic range, sensitivity and linearity of the simulation system are evaluated and analyzed. The correctness of the simulation model is verified by comparing them with the test results of the actual system.
-
表 1 MWHTS的89 GHz通道参数
指标 设计值 实际值 接收机噪声温度 800 K 600 K 带宽 1500 MHz 1475.6 MHz 灵敏度 1.0 K 0.38 K 表 2 各级功率输出与检波电压输出结果
仿真功率(dBm) 实际功率(dBm) 3 K 340 K 3 K 340 K 滤波器 –10.75 –9.34 –10.69 –9.27 仿真检波电压(mV) 实际检波电压(mV) 检波器 20.21 27.92 20.04 27.56 表 3 系统线性度仿真结果
$\Delta G/G$(%) ${T_{\rm in} }(\rm K)$ ${V_{\rm C} }(\rm mV)$ ${V_{\rm H} }(\rm mV)$ ${V_{\rm out} }(\rm mV)$ $a$ $b$ ${T_{\rm out} }(\rm K)$ $\Delta T(\rm K)$ 0.024 3 20.63 27.59 17.75 30.17 –532.46 3.10 –0.10 0.057 80 20.65 27.64 20.32 30.04 –530.39 80.09 –0.09 0.055 160 20.67 27.64 22.99 30.13 –532.77 159.90 0.10 0.042 240 20.63 27.59 25.60 30.17 –532.46 239.96 0.04 0.039 320 20.74 27.74 28.41 30.00 –532.20 320.10 –0.10 表 4 辐射灵敏度结果对比
积分时间(ms) 理论值(K) 仿真值(K) 实测值(K) 0.02 6.93 8.13 – 2 0.69 0.76 – 12 0.18 0.28 0.34 -
谷松岩, 郭杨, 王振占, 等. 风云三号A星微波湿度计探测通道定标分析[J]. 气象科技进展, 2013, 3(4): 43–49. doi: 10.3969/j.issn.2095-1973.2013.04.005GU Songyan, GUO Yang, WANG Zhenzhan, et al. Calibration analyses for sounding channels of MWHS onboard FY-3A[J]. Advances in Meteorological Science and Technology, 2013, 3(4): 43–49. doi: 10.3969/j.issn.2095-1973.2013.04.005 陆其峰. 风云三号A星大气探测资料数据在欧洲中期天气预报中心的初步评价与同化研究[J]. 中国科学: 地球科学, 2011, 54(10): 1453–1894. doi: 10.1007/s11430-011-4243-9LU Qifeng. Initial evaluation and assimilation of FY-3A atmospheric sounding data in the ECMWF System[J]. Science China Earth Sciences, 2011, 54(10): 1453–1894. doi: 10.1007/s11430-011-4243-9 牛立杰, 刘浩, 吴季. 高灵敏度、高稳定度微波辐射计技术研究与实验验证[J]. 电子与信息学报, 2017, 39(8): 2028–2032. doi: 10.11999/JEIT161112NIU Lijie, LIU Hao, and WU Ji. Research and experimental verification on high sensitivity and high stability microwave radiometer[J]. Journal of Electronics &Information Technology, 2017, 39(8): 2028–2032. doi: 10.11999/JEIT161112 BURRAGE D M, GOODBERLET M A, and HERON M L. Simulating passive microwave radiometer designs using Simulink[J]. Simulation, 2002, 78(1): 36–55. doi: 10.1177/0037549702078001201 卢红丽. L波段全极化微波辐射计链路仿真与分析[D]. 中国科学院研究生院(空间科学与应用研究中心), 2011.LU Hongli. Link simulation and analysis of L-band microwave radiometer[D]. Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2011. 高飞, 张俊荣. 数字增益自动补偿微波辐射计的计算机仿真[J]. 电子学报, 1999, 27(9): 22–24. doi: 10.3321/j.issn:0372-2112.1999.09.007GAO Fei and ZHANG Junrong. Computer simulation of digital auto gain compensative microwave radiometer[J]. Acta Electronica Sinica, 1999, 27(9): 22–24. doi: 10.3321/j.issn:0372-2112.1999.09.007 高飞, 张俊荣. 星载微波成像仪接收通道的仿真研究[J]. 遥感技术与应用, 1998, 13(3): 24–29. doi: 10.3969/j.issn.1004-0323.1998.03.005GAO Fei and ZHANG Junrong. Simulative study of received channel about space-borne microwave imaging instrument[J]. Remote Sensing Technology and Application, 1998, 13(3): 24–29. doi: 10.3969/j.issn.1004-0323.1998.03.005 张升伟, 王振占, 孙茂华, 等. 风云三号卫星先进微波大气探测仪系统设计与研制[J]. 中国工程科学, 2013, 15(7): 81–87. doi: 10.3969/j.issn.1009-1742.2013.07.012ZHANG Shengwei, WANG Zhenzhan, SUN Maohua, et al. The design and development of advanced microwave atmospheric counder onboard FY-3 satellite[J]. Engineering Science in China, 2013, 15(7): 81–87. doi: 10.3969/j.issn.1009-1742.2013.07.012 TIURI M. Radio astronomy receivers[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(7): 930–938. doi: 10.1109/TAP.1964.1138345 PENG Jinzheng. Polarimetric microwave radiometer calibration[D]. [Ph.D. dissertation], University of Michigan, 2008. PENG Jinzheng and RUF C S. Covariance statistics of fully Polarimetric brightness temperature measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 460–463. doi: 10.1109/LGRS.2009.2039115 SKOU N. Microwave Radiometer Systems: Design and Analysis[M]. Norwood, MA: Artech House, 1989. SEIFFERT M, MENNELLA A, BURIGANA C, et al. 1/f noise and other systematic effects in the Planck-LFI radiometers[J]. Astronomy & Astrophysics, 2002, 391(3): 1185–1197. doi: 10.1051/0004-6361:20020880 王振占. 海面风场全极化微波辐射测量——原理、系统设计与模拟研究[D]. [博士论文], 中国科学院研究生院(空间科学与应用研究中心), 2005.WANG Zhenzhan. Sea surface wind vector measured by polarimetric microwave radiometer-Principle, system design and simulation study[D]. [Ph.D. dissertation], Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2005. 何杰颖. 微波/毫米波大气温湿度探测定标与反演的理论和方法研究[D]. [博士论文], 中国科学院研究生院(空间科学与应用研究中心), 2012.HE Jieying. Research on theory and method of microwave and millimeter wave atmospheric temperature and humidity detection calibration and retrieval[D]. [Ph.D. dissertation], Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2012.