高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测

王茜竹 方冬 吴广富

王茜竹, 方冬, 吴广富. 基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测[J]. 电子与信息学报, 2020, 42(9): 2216-2222. doi: 10.11999/JEIT190505
引用本文: 王茜竹, 方冬, 吴广富. 基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测[J]. 电子与信息学报, 2020, 42(9): 2216-2222. doi: 10.11999/JEIT190505
Qianzhu WANG, Dong FANG, Guangfu WU. Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2216-2222. doi: 10.11999/JEIT190505
Citation: Qianzhu WANG, Dong FANG, Guangfu WU. Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2216-2222. doi: 10.11999/JEIT190505

基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测

doi: 10.11999/JEIT190505
基金项目: 重庆市科技重大主题专项重点示范项目(cstc2018jszx-cyztzxX0035),重庆市教委科学技术研究项目(KJQN201800642)
详细信息
    作者简介:

    王茜竹:女,1975年生,教授级高级工程师,研究方向为LTE、物联网以及车联网等协议标准等

    方冬:男,1993年生,硕士生,研究方向为5G无线通信技术

    吴广富:男,1980年生,博士生,高级工程师,研究方向为5G物理层关键技术等

    通讯作者:

    吴广富 wugf@cqupt.edu.cn

  • 中图分类号: TN929.5

Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access

Funds: The Chongqing of Science and Technology Bureau, (cstc2018jszx-cyztzxX0035), The Project of Science and Technology Research Program of Chongqing Education Commission (KJQN201800642)
  • 摘要: 免授权非正交多址接入技术(NOMA)结合多用户检测技术(MUD),能够满足大规模机器通信(mMTC)场景中的大连接量、低信令开销和低时延传输等需求。在基于压缩感知(CS)的MUD算法中,活跃用户数往往作为已知信息,而实际通信系统中很难准确估计。基于此,该文提出一种改进稀疏度自适应匹配的多用户算法(MSAMP-MUD)。该算法首先利用广义Dice系数匹配准则选择与残差最匹配的原子,更新用户支撑集;当残差能量接近噪声能量时,终止迭代,从而获得最终支持集;否则,采取上述准则更新用户支撑集,提高支撑集中活跃用户数估计精度。在迭代过程中,根据最近两次残差能量之比,选取不同的迭代步长,以降低检测迭代次数。仿真结果表明,所提算法与传统基于CS的MUD算法相比,误码率降低约9%,迭代次数减少约10%。
  • 图  1  免授权NOMA上行传输系统图

    图  2  MSAMP算法流程图

    图  3  不同信噪比下的误码率性能曲线图

    图  4  不同稀疏度下误码率性能曲线图

    图  5  不同稀疏度下的算法迭代次数曲线图

    表  1  系统仿真主要参数

    参数参数值
    系统用户数$K$200
    子载波数$N$100
    时隙数$J$7
    阈值${\varepsilon _1}$1.2
    调制方式QPSK
    过载率$\lambda $200%
    扩频矩阵Toeplitz矩阵
    下载: 导出CSV
  • 杨维, 赵懿伟, 侯健琦. 一种改进基于门限的稀疏码多址接入低复杂度多用户检测算法[J]. 电子与信息学报, 2018, 40(5): 1044–1049. doi: 10.11999/JEIT170647

    YANG Wei, ZHAO Yiwei, and HOU Jianqi. An improved threshold-based low complexity multiuser detection scheme for sparse code multiple access system[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1044–1049. doi: 10.11999/JEIT170647
    FAN Bin, SU Xin, JIE Zeng, et al. Method of CS-IC detection in the grant-free NOMA system[C]. The 12th International Symposium on Medical Information and Communication Technology (ISMICT), Sydney, Australia, 2018: 1–5. doi: 10.1109/ISMICT.2018.8573723.
    XU Xiao, RAO Xiongbin, and LAU V K N. Active user detection and channel estimation in uplink CRAN systems[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 2727–2732. doi: 10.1109/ICC.2015.7248738.
    李燕龙, 陈晓, 詹德满, 等. 非正交多址接入中稀疏多用户检测方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026

    LI Yanlong, CHEN Xiao, ZHAN Deman, et al. Method of sparse multi-user detection in non-orthogonal multiple access[J]. Journal of Xidian University:Natural Science, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026
    HAN Zhu, LI Husheng, and YIN Wotao. Compressive Sensing for Wireless Networks[M]. Cambridge: Cambridge University Press, 2013. doi: 10.1017/CBO9781139088497.
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    WANG Bichai, DAI Linglong, ZHANG Yuan, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20(11): 2320–2323. doi: 10.1109/LCOMM.2016.2602264
    OYERINDE O O. Multiuser detector for uplink grant free NOMA systems based on modified subspace pursuit algorithm[C]. The 12th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, Australia, 2018: 1–6. doi: 10.1109/ICSPCS.2018.8631787.
    ABEBE A T and KANG C G. Iterative order recursive least square estimation for exploiting frame-wise sparsity in compressive sensing-based MTC[J]. IEEE Communications Letters, 2016, 20(5): 1018–1021. doi: 10.1109/LCOMM.2016.2539255
    HONG J P, CHOI W, and RAO B D. Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 998–1010. doi: 10.1109/TWC.2014.2363165
    WANG Chao, CHEN Yang, WU Yiqun, et al. Performance evaluation of grant-free transmission for Uplink URLLC services[C]. The 85th IEEE Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–6. doi: 10.1109/VTCSpring.2017.8108593.
    MASOUDI M, AZARI A, YAVUZ E A, et al. Grant-free radio access IoT networks: Scalability analysis in coexistence scenarios[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–7. doi: 10.1109/ICC.2018.8422890.
    赵晓娟, 张爱华, 杨守义, 等. 基于结构化压缩感知的NOMA系统多用户检测[J]. 现代电子技术, 2018, 41(5): 1–4. doi: 10.16652/j.issn.1004-373x.2018.05.001

    ZHAO Xiaojuan, ZHANG Aihua, YANG Shouyi, et al. NOMA system′s multi-user detection based on structurization compressed sensing[J]. Modern Electronics Technique, 2018, 41(5): 1–4. doi: 10.16652/j.issn.1004-373x.2018.05.001
    3GPP. 3GPP TR-36.211 V13.2. 0 3rd Generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical channels and modulation[S]. France: 3GPP, 2016.
    DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. The 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 581–587. doi: 10.1109/ACSSC.2008.5074472.
    张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532–536. doi: 10.3969/j.issn1000-3630.2009.04.021

    ZHANG Yu, LIU Yudong, and JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4): 532–536. doi: 10.3969/j.issn1000-3630.2009.04.021
    MALEKI S, CHEPURI S P, and LEUS G. Optimal hard fusion strategies for cognitive radio networks[C]. 2011 IEEE Wireless Communications and Networking Conference, Cancun, Quintana Roo, Mexico, 2011: 1926–1931. doi: 10.1109/WCNC.2011.5779453.
    DU Yang, DONG Binhong, CHEN Zhi, et al. Efficient multi-user detection for uplink grant-free NOMA: Prior-information aided adaptive compressive sensing perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2812–2828. doi: 10.1109/JSAC.2017.2726279
    ZHAO Xiaojuan, YANG Shouyi, ZHANG Aihua, et al. A compressive sensing based multi-user detection algorithm for SIMa-NOMA systems[C]. The 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5. doi: 10.1109/ISWCS.2018.8491213.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1879
  • HTML全文浏览量:  813
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 修回日期:  2020-02-20
  • 网络出版日期:  2020-07-15
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回