高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于公式递推法的可变计算位宽的循环冗余校验设计与实现

陈容 陈岚 WAHLAArfan Haider

陈容, 陈岚, WAHLAArfan Haider. 基于公式递推法的可变计算位宽的循环冗余校验设计与实现[J]. 电子与信息学报, 2020, 42(5): 1261-1267. doi: 10.11999/JEIT190503
引用本文: 陈容, 陈岚, WAHLAArfan Haider. 基于公式递推法的可变计算位宽的循环冗余校验设计与实现[J]. 电子与信息学报, 2020, 42(5): 1261-1267. doi: 10.11999/JEIT190503
Rong CHEN, Lan CHEN, Arfan Haider WAHLA. Design and Implementation of Cyclic Redundancy Check with Variable Computing Width Based on Formula Recursive Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1261-1267. doi: 10.11999/JEIT190503
Citation: Rong CHEN, Lan CHEN, Arfan Haider WAHLA. Design and Implementation of Cyclic Redundancy Check with Variable Computing Width Based on Formula Recursive Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1261-1267. doi: 10.11999/JEIT190503

基于公式递推法的可变计算位宽的循环冗余校验设计与实现

doi: 10.11999/JEIT190503
基金项目: 国家科技重大专项(2018ZX03001006-002)
详细信息
    作者简介:

    陈容:女,1991年生,博士生,研究方向为5G通信关键技术和物理层基带芯片设计

    陈岚:女,1968年生,研究员,主要研究方向为纳米及SoC芯片设计方法学、移动通讯系统低功耗技术及物联网芯片技术等

    WAHLAArfan Haider:男,1988年生,博士生,研究方向为基于机器学习的智能无线网络和车载网络

    通讯作者:

    陈岚 chenlan@ime.ac.cn

  • 中图分类号: TN911.72

Design and Implementation of Cyclic Redundancy Check with Variable Computing Width Based on Formula Recursive Algorithm

Funds: The National Science and Technology Major Project (2018ZX03001006-002)
  • 摘要:

    循环冗余校验(CRC)与信道编码的级联使用,可以有效改善译码的收敛特性。在新一代无线通信系统,如5G中,码长和码率都具有多样性。为了提高编译码分段长度可变的级联系统的译码效率,该文提出一种可变计算位宽的CRC并行算法。该算法在现有固定位宽并行算法的基础上,合并公式递推法中反馈数据与输入数据的并行计算,实现了一种高并行度的CRC校验架构,并且支持可变位宽的CRC计算。与现有的并行算法相比,合并算法节省了电路资源的开销,在位宽固定时,资源节约效果明显,同时在反馈时延上也有将近50%的优化;在位宽可变时,电路资源的使用情况也有相应的优化。

  • 图  1  LFSR实现的串行编解码结构

    图  2  公式递推法M位并行CRC计算

    图  3  CRC与信道译码的级联使用

    图  4  可变计算位宽的CRC级联系统

    图  5  M位固定位宽合并计算

    图  6  1~M位计算位宽可变的CRC计算

    图  7  1~32位并行度可变的CRC编码RTL实现

    表  1  硬件资源开销

    项目
    顶层实体名crc_24
    芯片EP3C5E144C7(Cyclone III)
    逻辑器件数434/5136(8%)
    寄存器数26
    管脚数68/95(72%)
    下载: 导出CSV

    表  2  仿真测试结果

    总长度
    (bit)
    NumMatlab结果仿真结果
    数据1607, 24, 2900111101011011111111011024’h3d6ff6
    数据26523, 32, 1000111000001001101101000124’h3826d1
    数据37024, 15, 3101111110000001111101101124’h7e07db
    下载: 导出CSV

    表  3  选用的生成多项式

    CRC生成多项式
    CRC-12${x^{12}} + {x^{11}} + {x^3} + {x^2} + x + 1$
    CRC-16${x^{16}} + {x^{15}} + {x^2} + 1$
    CRC-32$\begin{array}{l}{x^{32}} + {x^{26}} + {x^{23}} + {x^{22}} + {x^{16}} + {x^{12}} + {x^{11}} + \\{x^{10}} + {x^8} + {x^7} + {x^5} + {x^4} + {x^2} + x + 1\end{array}$
    下载: 导出CSV

    表  4  电路资源和关键路径长度比较

    CRC式子(M=r)算法总计
    1 异或 关键路径
    CRC-12(12)文献[7]1361129
    文献[8] 120 66 8
    文献[10] 103 8
    文献[9] 77 53 8
    固定 52 43 5
    可变 64 78 9
    CRC-16(16) 文献[7] 218 186 10
    文献[8] 188 98 10
    文献[10] 94 10
    文献[9] 100 60 9
    固定 72 54 5
    可变 88 101 9
    CRC-32(32) 文献[7] 1031 967 12
    文献[8] 928 518 12
    文献[10] 675 10
    文献[9] 888 461 12
    固定 452 313 6
    可变 484 408 11
    下载: 导出CSV
  • LI Bin, HUANG Zhiping, SU Shaojing, et al. Implementation of CRC in 10-gigabit Ethernet based on FPGA[J]. Applied Mechanics and Materials, 2014, 599–601: 1548–1552. doi: 10.4028/www.scientific.net/AMM.599-601.1548
    WANG Bingrui, CHEN Pingping, FANG Yi, et al. The design of vertical RS-CRC and LDPC code for ship-based satellite communications on-the-move[J]. IEEE Access, 2019, 7: 44977–44986. doi: 10.1109/ACCESS.2019.2895746
    CAMPOBELLO G, PATANE G, and RUSSO M. Parallel CRC realization[J]. IEEE Transactions on Computers, 2003, 52(10): 1312–1319. doi: 10.1109/TC.2003.1234528
    MUTHIAH D and RAJ A A B. Implementation of high-speed LFSR design with parallel architectures[C]. 2012 International Conference on Computing, Communication and Applications, Dindigul, India, 2012: 1–6.
    HUO Yuanhong, LI Xiaoyang, WANG Wei, et al. High performance table-based architecture for parallel CRC calculation[C]. The 21st IEEE International Workshop on Local and Metropolitan Area Networks, Beijing, 2015: 1–6.
    BAJARANGBALI and ANAND P A. Design of high speed CRC algorithm for ethernet on FPGA using reduced lookup table algorithm[C]. 2016 IEEE Annual India Conference, Bangalore, India, 2016: 1–6.
    DERBY J H. High-speed CRC computation using state-space transformations[C]. GLOBECOM’01. IEEE Global Telecommunications Conference, San Antonio, USA, 2001: 166–170.
    KENNEDY C and REYHANI-MASOLEH A. High-speed CRC computations using improved state-space transformations[C]. 2009 IEEE International Conference on Electro/Information Technology, Windsor, Canada, 2009: 9–14.
    HU Guanghui, SHA Jin, and WANG Zhongfeng. High-speed parallel LFSR architectures based on improved state-space transformations[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(3): 1159–1163. doi: 10.1109/TVLSI.2016.2608921
    JUNG J, YOO H, LEE Y, et al. Efficient parallel architecture for linear feedback shift registers[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(11): 1068–1072. doi: 10.1109/tcsii.2015.2456294
    CHENG Chao and PARHI K K. High-speed parallel CRC implementation based on unfolding, pipelining, and retiming[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2006, 53(10): 1017–1021. doi: 10.1109/TCSⅡ.2006.882213
    AYINALA M and PARHI K K. High-speed parallel architectures for linear feedback shift registers[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4459–4469. doi: 10.1109/TSP.2011.2159495
    李伟华, 焦秉立. 一种基于分段CRC的LDPC译码的改进算法[J]. 电子与信息学报, 2008, 30(5): 1167–1170. doi: 10.3724/SP.J.1146.2006.01763

    LI Weihua and JIAO Bingli. Improved method for LDPC decoding algorithm aided by segmented cyclic redundancy checks[J]. Journal of Electronics &Information Technology, 2008, 30(5): 1167–1170. doi: 10.3724/SP.J.1146.2006.01763
    TUSHA A, DOĞAN S, and ARSLAN H. IQI mitigation for narrowband IoT systems with OFDM-IM[J]. IEEE Access, 2018, 6: 44626–44634. doi: 10.1109/ACCESS.2018.2864892
    VAN WONTERGHEM J, ALLOUM A, BOUTROS J J, et al. On short-length error-correcting codes for 5G-NR[J]. Ad Hoc Networks, 2018, 79: 53–62. doi: 10.1016/j.adhoc.2018.06.005
    RICHARDSON T and KUDEKAR S. Design of low-density parity check codes for 5G new radio[J]. IEEE Communications Magazine, 2018, 56(3): 28–34. doi: 10.1109/MCOM.2018.1700839
    王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716

    WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  3034
  • HTML全文浏览量:  1203
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2019-10-30
  • 网络出版日期:  2019-11-07
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回