高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向可靠性的5G网络切片重构及映射算法

赵国繁 唐伦 胡彦娟 赵培培 陈前斌

赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌. 面向可靠性的5G网络切片重构及映射算法[J]. 电子与信息学报, 2020, 42(6): 1478-1485. doi: 10.11999/JEIT190500
引用本文: 赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌. 面向可靠性的5G网络切片重构及映射算法[J]. 电子与信息学报, 2020, 42(6): 1478-1485. doi: 10.11999/JEIT190500
Guofan ZHAO, Lun TANG, Yanjuan HU, Peipei ZHAO, Qianbin CHEN. A Reliability-aware 5G Network Slice Reconfiguration and Embedding Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1478-1485. doi: 10.11999/JEIT190500
Citation: Guofan ZHAO, Lun TANG, Yanjuan HU, Peipei ZHAO, Qianbin CHEN. A Reliability-aware 5G Network Slice Reconfiguration and Embedding Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1478-1485. doi: 10.11999/JEIT190500

面向可靠性的5G网络切片重构及映射算法

doi: 10.11999/JEIT190500
基金项目: 国家自然科学基金(61571073),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
    作者简介:

    赵国繁:女,1993年生,硕士,研究方向为5G网络切片中的资源分配,可靠性

    唐伦:男,1973年生,教授,博士生导师,研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    胡彦娟:女,1993年生,硕士生,研究方向为网络切片的映射与资源分配

    赵培培:女,1993年生,硕士生,研究方向为5G网络切片、网络虚拟化

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    赵国繁 1349366355@qq.com

  • 中图分类号: TN929.5

A Reliability-aware 5G Network Slice Reconfiguration and Embedding Algorithm

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要:

    针对传统网络切片映射方法资源利用率低且可靠性差的问题,该文提出了可靠性感知的网络切片(NS)重构及映射策略(RNSRE)。首先,建立了面向可靠性和资源的网络切片可靠映射效用函数。其次,综合考虑虚拟网络功能(VNF)的资源需求和位置约束,提出了一种VNF可靠性需求的度量方法。在此基础上,以最大化VNF可靠部署收益的同时最小化链路带宽资源开销为目标,建立了切片可靠映射整数线性规划模型。最后,针对不同的网络切片类型,提出了基于邻域搜索的网络切片映射算法和关键VNF备份的网络切片重构映射算法。仿真结果表明,所提算法在满足VNF可靠性需求的同时,提高了资源利用率,降低了映射的开销。

  • 图  1  5G网络切片场景

    图  2  不同算法平均成本比较

    图  3  所提算法与3种算法的平均物理节点、链路资源利用率累计分布函数

    图  4  不同算法NSR平均接受率比较

    图  5  不同算法到达的可靠性比较

    表  1  基于邻域搜索的网络切片映射算法

    输入:NSR $G_v^{\rm{g}} = (V_{\rm{g}},E_{\rm{g}},R_{{\rm{req}}}^{\rm{g}})$,物理网络${G_{\rm{s}}} = \left( {{N_{\rm{s}}},{L_{\rm{s}}}} \right)$(5)    ${P_i} = P_{{\rm{next}}}^{\rm{g}}$, ${R_{{\rm{gap}}}} = \displaystyle\prod\limits_{{n_i} \in P_{{\rm{next}}}^{\rm{g}}} {{R_i}} - R_{{\rm{req}}}^{\rm{g}}$
    输出:NSE方案${P^{\rm{g}}} = \left[ {P^{\rm{g}}\left( {{v_k}} \right),P^{\rm{g}}\left( {{e_k}} \right)} \right]$(6)    计算当前的带宽消耗为${b_{\rm{g}}}$
    (1) 搜索空间$S$, $P_{{\rm{opt}}}^{\rm{g}} = {P_{{\rm{init}}}}$; ${P_i} = P_{{\rm{init}}}^{\rm{g}}$(7)   end if
    (2) while($0.5 \le { { {R_{ {\rm{gap} } } }} / { {R_{ {\rm{req} } } } } } + { {\left( { {b^{\rm{g} } } - b_{ {\rm{req} } }^{\rm{g} } } \right)} / {b_{ {\rm{req} } }^{\rm{g} } } } \le 1$), do(8)   if $\left( {{\rm Obj}\left( {P_{ {\rm{next} } }^{\rm{g} } } \right) < {\rm Obj}\left( {P_{ {\rm{opt} } }^{\rm{g} } } \right)} \right)$ then
    (3)   在${P_i}$的邻域解中搜索当前更优的个体$P_{{\rm{next}}}^{\rm{g}}$(9)    $P_{{\rm{opt}}}^{\rm{g}} = P_{{\rm{next}}}^{\rm{g}}$
    (4)   if $\displaystyle\prod\limits_{ {n_i} \in P_{ {\rm{next} } }^{\rm{g} } } { {R_i} } \ge R_{ {\rm{req} } }^{\rm{g} }$ then(10)   end if
    (11) end while
    下载: 导出CSV

    表  2  关键VNF备份网络切片重构算法

    输入:NSR $G_v^{\rm{g}} = (V_{\rm{g}},E_{\rm{g}})$,备份节点集${V_{{\rm{reconf}}}}$
    输出:${P^{\rm{g}}} = \left[ {P_{}^{\rm{g}}\left( {{v_k}} \right),P_{}^{\rm{g}}\left( {{e_k}} \right)} \right]$
    (1) for each $v_i^{\rm{g}} \in {V_{{\rm{reconf}}}}$
    (2) 专有备份节点$v_i^b$, $C_k^b = C_i^{\rm{g}}$,
    (3) 备份链路
    (4) 基于式(23)得到$R\left( {G_{{\rm{backup}}}^{\rm{g}}} \right)$
    (5) end for
    (6) while($R\left( {G_{ {\rm{backup} } }^{\rm{g} } } \right) \le R_{ {\rm{req} } }^{\rm{g} }$), do
    (7)  for all $v_k^{\rm{g}} \in {V_{\rm{g}}}$, do
    (8)   按照VNF可靠性递增,对节点进行排序
    (9)   选择相邻VNF对提供共享备份节点$v_i^b$, $C_k^b = \max \left\{ {C_i^{\rm g} ,C_j^{\rm{g}}} \right\}$
    (10)   选择关键VNF对$v_i^{\rm{g}},v_j^{\rm{g}} = {\rm{arg}}\;{\rm{max}}\left\{ {{\theta _{ij}}|v_i^{\rm{g}},v_j^{\rm{g}} \in {V_{\rm{g}}}} \right\}$
    (11)   根据$v_i^{\rm{g}},v_j^{\rm{g}} \in {V_{\rm{g}}}$的状态,选择共享备份可靠性估算模型得到
         $R\left( {G_{{\rm{backup}}}^{\rm{g}}} \right)$
    (12)  end for
    (13)   链路备份
    (14) end while
    (15) return
    下载: 导出CSV

    表  3  仿真参数设置表

    仿真参数参数设置仿真参数参数设置
    物理节点的数目N=12, 25, 36物理节点CPU资源容量U[10, 20]
    物理节点可靠性分布U[0.95, 0.99]物理链路带宽资源容量U[20, 50]
    NSR的VNF个数3NSR生命周期[4, 12, 24]
    3种类型切片的可靠性需求U[0.90, 0.98]VNF节点CPU资源需求U[2, 6]
    VNF之间带宽资源需求U[8, 16]
    下载: 导出CSV
  • ZHANG Haijun, LIU Na, CHU Xiaoli, et al. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.2017.1600940
    ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/MCOM.2017.1600935
    FOUKAS X, PATOUNAS G, ELMOKASHFI A, et al. Network slicing in 5G: Survey and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 94–100. doi: 10.1109/MCOM.2017.1600951
    LI Xi, CASELLAS R, LANDI G, et al. 5G-crosshaul network slicing: Enabling multi-tenancy in mobile transport networks[J]. IEEE Communications Magazine, 2017, 55(8): 128–137. doi: 10.1109/MCOM.2017.1600921
    VASSILARAS S, GKATZIKIS L, LIAKOPOULOS N, et al. The algorithmic aspects of network slicing[J]. IEEE Communications Magazine, 2017, 55(8): 112–119. doi: 10.1109/MCOM.2017.1600939
    ZHANG Nan, LIU Yafeng, FARMANBAR H, et al. Network slicing for service-oriented networks under resource constraints[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2512–2521. doi: 10.1109/JSAC.2017.2760147
    GUAN Wanqing, WEN Xiangming, WANG Luhan, et al. A service-oriented deployment policy of end-to-end network slicing based on complex network theory[J]. IEEE Access, 2018, 6: 19691–19701. doi: 10.1109/ACCESS.2018.2822398
    刘光远, 苏森. 面向底层单节点失效的轻量级可靠虚拟网络映射算法[J]. 电子与信息学报, 2013, 35(11): 2644–2649. doi: 10.3724/SP.J.1146.2013.00254

    LIU Guangyuan and SU Sen. Less stringent reliable virtual network mapping algorithm for substrate single node failure[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2644–2649. doi: 10.3724/SP.J.1146.2013.00254
    LIU Jiajia, JIANG Zhongyuan, KATO N, et al. Reliability evaluation for NFV deployment of future mobile broadband networks[J]. IEEE Wireless Communications, 2016, 23(3): 90–96. doi: 10.1109/MWC.2016.749807
    KONG Jian, KIM I, WANG Xi, et al. Guaranteed-availability network function virtualization with network protection and VNF replication[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254730.
    CHEN Yiheng, AYOUBI S, and ASSI C. CORNER: COst-efficient and reliability-aware virtual NEtwork redesign and embedding[C]. The 3rd IEEE International Conference on Cloud Networking, Luxembourg, 2014: 356–361. doi: 10.1109/CloudNet.2014.6969021.
    SUN Jian, ZHU Guangyang, SUN Gang, et al. A reliability-aware approach for resource efficient virtual network function deployment[J]. IEEE Access, 2018, 6: 18238–18250. doi: 10.1109/ACCESS.2018.2815614
    BIJWE S, MACHIDA F, ISHIDA S, et al. End-to-end reliability assurance of service chain embedding for network function virtualization[C]. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Berlin, Germany, 2017: 1–4. doi: 10.1109/NFV-SDN.2017.8169853.
    QU L, ASSI C, SHABAN K, et al. A reliability-aware network service chain provisioning with delay guarantees in NFV-enabled enterprise datacenter networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(3): 554–568. doi: 10.1109/TNSM.2017.2723090
    CATELANI M, CIANI L, PATRIZI G, et al. Reliability allocation procedures in complex redundant systems[J]. IEEE Systems Journal, 2018, 12(2): 1182–1192. doi: 10.1109/JSYST.2017.2651161
    FAN Jingyuan, YE Zilong, GUAN Chaowen, et al. GREP: Guaranteeing reliability with enhanced protection in NFV[C]. 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization, London, UK, 2015: 13–18.
    MIZIULA P and NAVARRO J. Birnbaum importance measure for reliability systems with dependent components[J]. IEEE Transactions on Reliability, 2019, 68(2): 439–450. doi: 10.1109/TR.2019.2895400
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  3757
  • HTML全文浏览量:  1614
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2020-02-16
  • 网络出版日期:  2020-03-11
  • 刊出日期:  2020-06-22

目录

    /

    返回文章
    返回