A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis
-
摘要:
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法—烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。
-
关键词:
- 系统级故障诊断 /
- 烟花算法 /
- 反向传播神经网络 /
- PMC模型 /
- 烟花-反向传播神经网络算法
Abstract:In order to diagnose fault units in the large-scale multiprocessor systems more quickly and accurately, a system-level fault diagnosis algorithm—FireWorks Algorithm-Back Propagation Fault Diagnosis (FWA-BPFD) based on fireworks algorithm and Back Propagation(BP) neural network is proposed. Firstly, two population strategy, cooperative operator and optimal operator are introduced into fireworks algorithm. A new fitness function is designed, and the mutation operator, mapping rule and selection strategy are optimized. Then, the optimization process of weight and threshold value in BP neural network is optimized by the self-regulating mechanism of global and local searching ability of fireworks algorithm. Simulation results show that compared with other algorithms, this algorithm not only reduces the number of iterations and training time, but also improves the accuracy of diagnosis.
-
表 1 PMC诊断模型
测试结点${u_i}$ 被测试结点${u_j}$ 测试结果${u_{ij}}$ 0 0 0 0 1 1 1 0 0/1 1 1 0/1 表 2 烟花算法的其它参数设置
参数名称 参数说明 参数值 ${A_{\rm{min}}}$ 烟花的最小爆炸半径 2 ${p_{\rm{c}}}$ 协作算子交叉概率 0.5 ${X_{\rm{LB}}}$ 烟花位置下界值 0 ${X_{\rm{UB}}}$ 烟花位置上界值 1 T 最大迭代次数 1000 表 3 神经网络训练关键参数设置
参数名称 参数说明 参数值 show 设置数据显示刷新频率 30 lr 网络的学习率 0.01 goal 网络输出误差最小值 7e-07 epochs 最大迭代次数 10000 表 4 4种算法在不同系统规模中的性能比较
算法名称 $n = 50$ $n = 100$ 训练时间(s) 迭代次数 训练时间(s) 迭代次数 BPFD 412 685 34163 5937 CS-BPFD 233 327 17810 2134 GA-BPFD 310 365 27890 3978 本文FWA-BPFD 212 305 16755 1998 -
PREPARATA F P, METZE G, and CHIEN R T. On the connection assignment problem of diagnosable systems[J]. IEEE Transactions on Electronic Computers, 1967, EC-16(6): 848–854. doi: 10.1109/PGEC.1967.264748 BARSI F, GRANDONI F, and MAESTRINI P. A theory of diagnosability of digital systems[J]. IEEE Transactions on Computers, 1976, C-25(6): 585–593. doi: 10.1109/tc.1976.1674658 CHWA K Y and HAKIMI S L. Schemes for fault-tolerant computing: a comparison of modularly redundant and t-diagnosable systems[J]. Information and Control, 1981, 49(3): 212–238. doi: 10.1016/S0019-9958(81)90388-0 MALEK M. A comparison connection assignment for diagnosis of multiprocessor systems[C]. The 7th Annual Symposium on Computer Architecture. New York, USA, 1980: 31–36. doi: 10.1145/800053.801906. MAENG J and MALEK M. A comparison connection assignment for self-diagnosis of multiprocessor systems[C]. The 11th International Symposium on Fault-Tolerant Computing, Portland, USA, 1981: 173–175. XIE Min, YE Liangcheng, and LIANG Jiarong. A t/k diagnosis algorithm on hypercube‐like networks[J]. Concurrency and Computation: Practice and Experience, 2018, 30(6): e4358. doi: 10.1002/cpe.4358 冯海林, 雷花, 梁伦. 一种基于PMC模型下的概率性矩阵诊断算法[J]. 南京理工大学学报: 自然科学版, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013FENG Hailin, LEI Hua, and LIANG Lun. Probability matrix diagnosis algorithm based on PMC model[J]. Journal of Nanjing University of Science and Technology, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013 云龙, 梁家荣, 周宁. 基于互连网络系统故障的新型自适应诊断算法[J]. 计算机应用研究, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016YUN Long, LIANG Jiarong, and ZHOU Ning. Novel adapted algorithm for interconnection network[J]. Application Research of Computers, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016 MOURAD E and NAYAK A. Comparison-based system-level fault diagnosis: A neural network approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(6): 1047–1059. doi: 10.1109/TPDS.2011.248 归伟夏, 刘翠. 一种Malek模型下的系统故障诊断算法[J]. 计算机工程与应用, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130GUI Weixia and LIU Cui. System-level diagnosis algorithm based on Malek model[J]. Computer Engineering and Applications, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130 WANG Yuxi, LI Zhan, XU Minghui, et al. An evolutionary approach based on ant colony system to system-level fault diagnosis[C]. The 8th IEEE International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016: 2493–2497. doi: 10.1109/IPEMC.2016.7512690. 赵冬. 关于系统级故障诊断的两种高效算法[D]. [硕士论文], 南京财经大学, 2016.ZHAO Dong. Two efficient algorithms about system-level fault diagnosis[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2016. LU Qian, GUI Weixia, and SU Meili. A fireworks algorithm for the system-level fault diagnosis based on MM* model[J]. IEEE Access, 2019, 7: 136975–136985. doi: 10.1109/ACCESS.2019.2942336 韩树楠, 张旻, 李歆昊. 基于构造代价函数求解的自同步扰码盲识别方法[J]. 电子与信息学报, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026HAN Shunan, ZHANG Min, and LI Xinhao. A blind identification method of self-synchronous scramblers based on optimization of established cost function[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026 梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J]. 电子与信息学报, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration basedon brain storming optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261 CUI Jiefen, LI Yinping, WANG Shixin, et al. Directional preparation of anticoagulant-active sulfated polysaccharides from Enteromorpha prolifera using artificial neural networks[J]. Scientific Reports, 2018, 8(1): No. 3062. doi: 10.1038/s41598-018-21556-x LI Jingmei, TIAN Qiao, ZHANG Guoyin, et al. Task scheduling algorithm based on fireworks algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): No. 256. doi: 10.1186/s13638-018-1259-2 XUE Yu, ZHAO Binping, MA Tinghuai, et al. A self-adaptive fireworks algorithm for classification problems[J]. IEEE Access, 2018, 6: 44406–44416. doi: 10.1109/ACCESS.2018.2858441 刘田田. 基于BP神经网络的系统级故障诊断算法研究[D]. [硕士论文], 南京财经大学, 2015.LIU Tiantian. System level fault diagnosis algorithm research based on BP neural network[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2015.