高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极坐标正弦变换的Copy-move篡改检测

马杰 钟斌斌 焦亚男

马杰, 钟斌斌, 焦亚男. 基于极坐标正弦变换的Copy-move篡改检测[J]. 电子与信息学报, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481
引用本文: 马杰, 钟斌斌, 焦亚男. 基于极坐标正弦变换的Copy-move篡改检测[J]. 电子与信息学报, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481
Jie MA, Binbin ZHONG, Yanan JIAO. Copy-move Forgeries Detection Based on Polar Sine Transform[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481
Citation: Jie MA, Binbin ZHONG, Yanan JIAO. Copy-move Forgeries Detection Based on Polar Sine Transform[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481

基于极坐标正弦变换的Copy-move篡改检测

doi: 10.11999/JEIT190481
详细信息
    作者简介:

    马杰:男,1978年生,教授,研究方向为图像处理与模式识别

    钟斌斌:男,1990年生,硕士生,研究方向为数字图像处理

    焦亚男:女,1992年生,硕士生,研究方向为数字图像处理

    通讯作者:

    马杰 jma@hebut.edu.cn

  • 中图分类号: TN911.73; TP391.41

Copy-move Forgeries Detection Based on Polar Sine Transform

  • 摘要:

    该文使用极坐标正弦变换(PST)特征对图像进行Copy-move篡改检测,将待检测图像转换成灰度图并进行PST特征提取,并采用改进的快速近似最近邻搜索算法PatchMatch对特征描述符进行匹配,以克服匹配全局描述符带来的处理时间较长的缺点。实验分析表明,该文所提方法不仅对图像的线性Copy-move篡改和旋转干扰篡改有很好的效果,而且对噪声和JPEG压缩干扰篡改也具有一定的鲁棒性。最后对综合干扰篡改实验测试发现,在综合篡改幅度较小的情况下,准确率可以达到98.0%。

  • 图  1  图像篡改与偏移映射

    图  2  PatchMatch算法

    图  3  改进后的传播

    图  4  PatchMatch算法匹配

    图  5  后期处理

    图  6  篡改检测流程图

    图  7  篡改检测

    图  8  旋转检测

    图  9  添加噪声检测

    图  10  JPEG压缩检测

    图  11  综合篡改检测

    图  12  3种算法在不同干扰下的准确率

  • AL-QERSHI O M and KHOO B E. Passive detection of copy-move forgery in digital images: State-of-the-art[J]. Forensic Science International, 2013, 231(1/3): 284–295. doi: 10.1016/j.forsciint.2013.05.027
    ZHOU Xinmin, WANG Kaiyuan, and FU Jian. A method of SIFT simplifying and matching algorithm improvement[C]. IEEE 2016 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2016: 73–77. doi: 10.1109/ICIICII.2016.0029.
    AHSAN A M and MOHAMAD D B. Machine learning technique for object detection based on SURF feature[J]. International Journal of Computational Vision and Robotics, 2017, 7(1/2): 6–19. doi: 10.1504/IJCVR.2017.081232
    FARID H. Image forgery detection[J]. IEEE Signal Processing Magazine, 2009, 26(2): 16–25. doi: 10.1109/MSP.2008.931079
    PIVA A. An overview on image forensics[J]. ISRN Signal Processing, 2013, 2013: 496701.
    AL-QERSHI O M and KHOO B E. Enhanced matching method for copy-move forgery detection by means of Zernike moments[C]. The 13th International Workshop on Digital-Forensics and Watermarking, Taipei, China, 2014: 485–497. doi: 10.1007/978-3-319-19321-2_37.
    闫旭, 姜威, 贲晛烨. 基于改进Hu不变矩的图像篡改检测算法[J]. 光学技术, 2018, 44(2): 171–176. doi: 10.13741/j.cnki.11-1879/o4.2018.02.008

    YAN Xu, JIANG Wei, and BEN Xianye. Image tamper detection algorithm based on improved Hu invariant moments[J]. Optical Technique, 2018, 44(2): 171–176. doi: 10.13741/j.cnki.11-1879/o4.2018.02.008
    AMERINI I, BALLAN L, CALDELLI R, et al. A SIFT-based forensic method for copy–move attack detection and transformation recovery[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099–1110. doi: 10.1109/TIFS.2011.2129512
    MUHAMMAD G, HUSSAIN M, KHAWAJI K, et al. Blind copy move image forgery detection using dyadic undecimated wavelet transform[C]. The 17th IEEE International Conference on Digital Signal Processing, Corfu, Greece, 2011. doi: 10.1109/ICDSP.2011.6004974.
    CHRISTLEIN V, RIESS C, JORDAN J, et al. An evaluation of popular copy-move forgery detection approaches[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(6): 1841–1854. doi: 10.1109/TIFS.2012.2218597
    YAP P T, JIANG Xudong, and KOT A C. Two-dimensional polar harmonic transforms for invariant image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1259–1270. doi: 10.1109/TPAMI.2009.119
    李扬, 吴敏渊, 颜佳. 基于改进PatchMatch的自相似性图像超分辨率算法[J]. 计算机应用研究, 2018, 35(4): 1231–1235. doi: 10.3969/j.issn.1001-3695.2018.04.058

    LI Yang, WU Minyuan, and YAN Jia. Self-similarity based image super-resolution algorithm using optimized PatchMatch[J]. Application Research of Computers, 2018, 35(4): 1231–1235. doi: 10.3969/j.issn.1001-3695.2018.04.058
    BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: A randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): No. 24. doi: 10.1145/1531326.1531330
    BARNES C, SHECHTMAN E, GOLDMAN D B, et al. The generalized PatchMatch correspondence algorithm[C]. The 11th European Conference on Computer Vision–ECCV 2010, Heraklion, Greece, 2010: 29–43. doi: 10.1007/978-3-642-15558-1_3.
    COZZOLINO D, POGGI G, and VERDOLIVA L. Efficient dense-field Copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284–2297. doi: 10.1109/TIFS.2015.2455334
    EHRET T and ARIAS P. On the convergence of PatchMatch and its variants[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 1121–1129. doi: 10.1109/CVPR.2018.00123.
    EHRET T. Automatic detection of internal copy-move forgeries in images[J]. Image Processing on Line, 2018(8): 167–191. doi: 10.5201/ipol.2018.213
  • 加载中
图(12)
计量
  • 文章访问数:  2443
  • HTML全文浏览量:  1189
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-11-05
  • 网络出版日期:  2019-11-28
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回