高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于提前终止迭代的概率近似消息传递检测算法

申敏 任茜源 何云

申敏, 任茜源, 何云. 基于提前终止迭代的概率近似消息传递检测算法[J]. 电子与信息学报, 2020, 42(11): 2649-2655. doi: 10.11999/JEIT190471
引用本文: 申敏, 任茜源, 何云. 基于提前终止迭代的概率近似消息传递检测算法[J]. 电子与信息学报, 2020, 42(11): 2649-2655. doi: 10.11999/JEIT190471
Min SHEN, Xiyuan REN, Yun HE. Probability Approximation Message Passing Detection Algorithm Based on Early Termination of Iteration[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2649-2655. doi: 10.11999/JEIT190471
Citation: Min SHEN, Xiyuan REN, Yun HE. Probability Approximation Message Passing Detection Algorithm Based on Early Termination of Iteration[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2649-2655. doi: 10.11999/JEIT190471

基于提前终止迭代的概率近似消息传递检测算法

doi: 10.11999/JEIT190471
基金项目: 国家科技重大专项基金(2018ZX03001026-002)
详细信息
    作者简介:

    申敏:女,1963年生,教授,研究方向为通信核心芯片、协议与系统应用技术

    任茜源:女,1995年生,硕士生,研究方向为移动通信物理层算法、信号检测

    何云:女,1979年生,博士生,研究方向为移动通信物理层算法、混合预编码

    通讯作者:

    任茜源 18883259691@163.com

  • 中图分类号: TN929.5

Probability Approximation Message Passing Detection Algorithm Based on Early Termination of Iteration

Funds: The National Science and Technology Major Project of China (2018ZX03001026-002)
  • 摘要: 大规模多输入多输出技术作为第5代通信系统的关键技术,可有效提高频谱利用率。基站端采用消息传递检测(MPD)算法可以实现良好的检测性能。但是由于MPD算法的计算复杂度随调制阶数和用户天线数的增加而增加,而概率近似消息传递检测(PA-MPD)算法可以减少MPD算法的计算复杂度。为了进一步降低PA-MPD算法的复杂度,该文在PA-MPD算法的基础上引入了提前终止迭代策略,提出了一种改进的概率近似消息传递检测算法(IPA-MPD)。首先确定不同用户的符号概率在迭代过程中的收敛速率,然后根据收敛率来判断用户的符号概率是否达到最佳收敛,最后对符号概率到达最佳收敛的用户终止算法迭代。仿真结果表明,在不同单天线用户配置下IPA-MPD算法的计算复杂度可降低为PA-MPD算法的52%~77%,且不损失算法的检测性能。
  • 图  1  MPD算法的消息传递过程

    图  2  不同阈值下IPA-MPD算法性能对比

    图  3  不同调制方式下IPA-MPD算法与PA-MPD算法性能对比

    图  4  3种调制方式下两种算法的性能对比

    图  5  不同阈值下IPA-MPD算法计算复杂度对比

    图  6  不同调制方式下IPA-MPD算法与PA-MPD算法计算复杂度对比

    图  7  3种调制方式下IPA-MPD与PA-MPD计算复杂度比值曲线

    表  1  IPA-MPD算法

     输入:$J,Z,\sigma _v^2,\varDelta ,T$
     输出:L
     1: 初始化:${p_i}({s_k}) = \dfrac{1}{ {\sqrt M } },i = 1,2, ··· ,2K,k = 1,2, ··· ,\sqrt M ,$
      ${R^1}({x_j}) = 1 $
     2: ${\rm{for} }\;t = 1\;{\rm{do}}$
     3:   ${\rm{for} }\;i = 1\;{\rm{to}}\;2K\;{\rm{do}}$
     4:    $ {{\mu }_{i}}\leftarrow \displaystyle\sum\limits_{j=1,j\ne i}^{2K}{{{J}_{ij}}\displaystyle\sum\limits_{\forall s\in \mathbb{B}}{sp_{j}^{t-1}(s)}} $
     5:    $\sigma _{i}^{2}\leftarrow \displaystyle\sum\limits_{j=1,j\ne i}^{2K}J_{ij}^{2}\left(\displaystyle\sum\limits_{\forall s\in \mathbb{B} }{ { {s}^{2} }p_{j}^{t-1}(s)}-E{ {({ {x}_{j} })}^{2} } \right)+\sigma _{v}^{2}$
     6:    $ {{L}_{i}}\leftarrow \dfrac{2{{J}_{ii}}}{\sigma _{i}^{2}}({{z}_{i}}-{{\mu }_{i}}) $
     7:    ${ { {\tilde{p} } }_{i} }\leftarrow \dfrac{ { {{\rm{e}}}^{ { {L}_{i} } } }}{1+{ {{\rm{e}}}^{ { {L}_{i} } } }}$
     8:    ${p_i} \leftarrow (1 - \varDelta ){ {\tilde p}_i} + \Delta { {\tilde p}_i}$
     9:    $ {A_i} \leftarrow {\rm{sort}}({\rm{ }}{p_i}) $
     10:   end
     11: end
     12: ${\rm{for} }\;t = 2\;{\rm{to}}\;{T_{\max } }\;{\rm{do}}$
     13:   ${\rm{for} }\;i = 1\;{\rm{to}}\;2K\;{\rm{do}}$
     14:    $ {\rm{if}}\;{R^{t - 1}}({x_i}) < T$
     15:     终止迭代
     16:    else
     17:     ${\mu _i} \leftarrow \displaystyle\sum\limits_{j = 1,j \ne i}^{2K} { {J_{ij} }\displaystyle\sum\limits_{p_j^{t - 1}(s) \in {A_j}(1,2, ··· ,M)} {sp_j^{t - 1}(s)} }$
     18:     $\sigma _i^2 \leftarrow \displaystyle\sum\limits_{j = 1,j \ne i}^{2K} {J_{ij}^2}\left (\displaystyle\sum\limits_{p_j^{t - 1}(s) \in {A_j}(1,2, ··· ,M)} {sp_j^{t - 1}(s)} - \right.$
          $ \Biggl.{19} E{({x_j})^2} \Bigggr){19}+ \sigma _v^2 $
     19:     $ {L_i} \leftarrow \dfrac{{2{J_{ii}}}}{{\sigma _i^2}}({z_i} - {\mu _i}) $
     20:     ${ {\tilde p}_i} \leftarrow \dfrac{ { {{\rm{e}}^{ {L_i} } } }}{ {1 + {{\rm{e}}^{ {L_i} } } }}$
     21:     ${p_i} \leftarrow (1 - \varDelta ){ {\tilde p}_i} + \Delta { {\tilde p}_i}$
     22:     $ {A_i} \leftarrow {\rm{sort}}({\rm{ }}{p_i}) $
     23:     $ {R^t}({x_i}) \leftarrow \displaystyle\sum\limits_{k = 1}^{\sqrt M } {|p_{{x_i}}^t({s_k}) - p_{{x_i}}^{t - 1}({s_k})|} $
     24:    end
     21:   end
     22: end
    下载: 导出CSV

    表  2  M-QAM调制下PA-MPD[10]算法和IPA-MPD算法的实数域乘法和加法次数

    算法名称加法乘法
    PA-MPD-n$\begin{array}{l}((2n + 1)(2K - 1) - 2)2K(t - 1)\\ + ((2\sqrt M {\rm{ + 1}})2K - 1 - {\rm{1}}){\rm{2}}K\end{array}$$\begin{array}{l} (2n + 1)(2K - 1)2K(t - 1) \\ + (2\sqrt M + 1)(2K - 1)2K \\ \end{array} $
    IPA-MPD-n$\begin{array}{l}((2n + 1)(2K - 1) - 2)2K({t_{{\rm{ave}}}} - 1)\\ + ((2\sqrt M {\rm{ + 1}})2K - 1 - {\rm{1}}){\rm{2}}K\end{array}$$\begin{array}{l}(2n + 1)(2K - 1)2K({t_{{\rm{ave}}}} - 1)\\ + ((2\sqrt M {\rm{ + 1}})2K - 1 - {\rm{1}}){\rm{2}}K\end{array}$
    下载: 导出CSV
  • HE Hengtao, WEN Chaokai, JIN Shi, et al. A model-driven deep learning network for MIMO detection[C]. 2018 IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 584–588.
    DUANGSUWAN S and JAMJAREEGULGARN P. Detection of data symbol in a massive MIMO systems for 5G wireless communication[C]. 2017 International Electrical Engineering Congress, Pattaya, Thailand, 2017: 1–4.
    YANG Shaoshi and HANZO L. Fifty years of MIMO detection: The road to large-scale MIMOs[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1941–1988. doi: 10.1109/COMST.2015.2475242
    FREY B J. Graphical Models for Machine Learning and Digital Communication[M]. Cambridge: The MIT Press, 1998: 25–34.
    SOM P, DATTA T, CHOCKALINGAM A, et al. Improved large-MIMO detection based on damped belief propagation[C]. 2010 IEEE Information Theory Workshop on Information Theory, Cairo, Egypt, 2010: 1–5.
    USAMI T, NISHIMURA T, OHGANE T, et al. BP-based detection of spatially multiplexed 16-QAM signals in a fully massive MIMO system[C]. 2016 International Conference on Computing, Networking and Communications, Kauai, USA, 2016: 166–170.
    SOM P, DATTA T, SRINIDHI N, et al. Low-complexity detection in large-dimension MIMO-ISI channels using graphical models[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1497–1511. doi: 10.1109/JSTSP.2011.2166950
    WU Sheng, KUANG Linling, NI Zuyao, et al. Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 902–915. doi: 10.1109/JSTSP.2014.2313766
    NARASIMHAN T L and CHOCKALINGAM A. Channel hardening-exploiting message passing (CHEMP) receiver in large-scale MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 847–860. doi: 10.1109/JSTSP.2014.2314213
    ZHU Haochuan, LIN Jun, and WANG Zhongfeng. Reduced complexity message passing detection algorithm in large-scale MIMO systems[C]. The 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017: 1–5.
    ZENG Jing, LIN Jun, and WANG Zhongfeng. Low complexity message passing detection algorithm for large-scale MIMO systems[J]. IEEE Wireless Communications Letters, 2018, 7(5): 708–711. doi: 10.1109/LWC.2018.2813386
    TAN Xiaosi, ZHONG Zhiwei, ZHANG Zaichen, et al. Low-complexity message passing MIMO detection algorithm with deep neural network[C]. Proceedings of 2018 IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 559–563.
    GOLDBERGER J and LESHEM A. MIMO detection for high-order QAM based on a Gaussian tree approximation[J]. IEEE Transactions on Information Theory, 2011, 57(8): 4973–4982. doi: 10.1109/TIT.2011.2159037
    GU Lixin, WANG Wenjin, ZHONG Wen, et al. Message-passing detector for uplink massive MIMO systems based on energy spread transform[C]. The 27th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6.
    JIA Min, WANG Linfang, GUO Qing, et al. A low complexity detection algorithm for fixed up-link SCMA System in mission critical scenario[J]. IEEE Internet of Things Journal, 2018, 5(5): 3289–3297. doi: 10.1109/JIOT.2017.2696028
    LIU Lei, YUEN C, GANG Yongliang, et al. Convergence analysis and assurance for Gaussian message passing iterative detector in massive MU-MIMO systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6487–6501. doi: 10.1109/TWC.2016.2585481
    YANG Chao, XU Weihong, ZHANG Zaichen, et al. A channel-blind detection for SCMA based on image processing techniques[C]. 2018 IEEE International Symposium on Circuits and Systems, Florence, Italy, 2018: 1–5.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1248
  • HTML全文浏览量:  732
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2020-04-21
  • 网络出版日期:  2020-08-29
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回