高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夜视抗晕光融合图像自适应分区质量评价

郭全民 柴改霞 李翰山

郭全民, 柴改霞, 李翰山. 夜视抗晕光融合图像自适应分区质量评价[J]. 电子与信息学报, 2020, 42(7): 1750-1757. doi: 10.11999/JEIT190453
引用本文: 郭全民, 柴改霞, 李翰山. 夜视抗晕光融合图像自适应分区质量评价[J]. 电子与信息学报, 2020, 42(7): 1750-1757. doi: 10.11999/JEIT190453
Ren Bo, Shi Long-Fei, Wang Hong-Jun, Li Yong-Zhen, Wang Guo-Yu. Investigation on of Polarization Filtering Scheme to Suppress GSM Interference in Radar Main Beam[J]. Journal of Electronics & Information Technology, 2014, 36(2): 459-464. doi: 10.3724/SP.J.1146.2013.00257
Citation: Quanmin GUO, Gaixia CHAI, Hanshan LI. Quality Evaluation of Night Vision Anti-halation Fusion Image Based on Adaptive Partition[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1750-1757. doi: 10.11999/JEIT190453

夜视抗晕光融合图像自适应分区质量评价

doi: 10.11999/JEIT190453
基金项目: 国家自然科学基金(61773305),陕西省重点研发计划项目(2019GY-094)
详细信息
    作者简介:

    郭全民:男,1974年生,博士,教授,研究方向为智能感知与信息融合、图像处理及机器视觉

    柴改霞:女,1993年生,硕士,研究方向为图像处理及机器视觉

    李翰山:男,1986年生,博士,教授,研究方向为智能传感与信息处理、图像处理及机器视觉

    通讯作者:

    郭全民 guoqm@163.com

  • 中图分类号: TN911.73; TP391.41

Quality Evaluation of Night Vision Anti-halation Fusion Image Based on Adaptive Partition

Funds: The National Natural Science Foundation of China (61773305), The Shaanxi Provincial Key Research and Development Program (2019GY-094)
  • 摘要:

    针对夜视晕光场景中,高亮度晕光信息导致现有红外与可见光融合图像评价方法失效的问题,该文提出一种自适应分区的融合图像质量评价方法。该方法根据可见光图像的晕光程度自动确定自适应系数,并通过迭代计算可见光灰度图像的晕光临界灰度值,将融合图像自动分为多个晕光区和非晕光区;在晕光区由设计的晕光消除度指标评价融合图像的晕光消除效果;在非晕光区从融合图像自身特性、对原始图像信息保留程度以及人眼视觉效果3方面评价融合图像纹理色彩等细节信息的增强效果;通过对4种不同抗晕光算法的融合图像进行评价分析,甄选出9种客观评价指标构成夜视抗晕光融合图像质量评价体系。不同夜视晕光场景下的实验结果表明,所提方法能够全面、合理地评价红外与可见光融合的抗晕光图像质量,解决了融合图像晕光消除越彻底客观评价结果反而越差的问题,也适于评判不同抗晕光融合算法的优劣。

  • 图  1  原始图像及融合图像

    图  2  自适应系数m的拟合曲线

    图  3  分区图像

    图  4  融合结果

    图  5  市郊道路距约5 m处的融合图像

    图  6  市郊道路距约15 m处的融合图像

    图  7  市内主干道距约20 m处的的融合图像

    图  8  不同晕光场景下的评价体系雷达图

    表  1  曲线拟合优度

    曲线SSERMSER2
    基线0.04810.03100.9487
    上界0.02930.03180.9566
    下界0.03040.03130.9559
    最优0.00420.01740.9910
    下载: 导出CSV

    表  2  晕光消除度

    算法DHE
    IHS0.7431
    曲波0.8500
    IHS-曲波0.8978
    改进IHS-曲波0.9277
    下载: 导出CSV

    表  3  无参考图像客观评价指标

    算法非晕光区融合图像未分区融合图像
    μσEAGEISFμσEAGEISF
    IHS55.511423.72014.77151.61491.30099.1389102.141725.93085.78623.989914.057610.1062
    曲波66.460428.01014.78453.50714.196214.5914105.318038.73246.87626.880718.775721.1077
    IHS-曲波72.681530.01185.47603.79877.370217.1324106.897239.44037.08127.724520.807022.9812
    改进IHS-曲波94.852230.70216.08824.33677.380819.3482104.930838.43346.64636.306315.032419.3287
    下载: 导出CSV

    表  4  全参考图像客观评价指标

    算法CEFU-VIMIFU-VIRMSEFU-VIPSNRFU-VICEFU-IRMIFU-IRRMSEFU-IRPSNRFU-IR
    IHS0.99611.181030.946858.72180.98311.093330.839260.3349
    曲波0.46551.985327.721963.76480.68501.631429.796165.5507
    IHS-曲波0.30182.513526.868364.92610.52473.182125.961767.8470
    改进 IHS-曲波0.20513.001223.700365.94100.32894.881924.911868.2431
    下载: 导出CSV

    表  5  视觉系统的客观评价指标

    算法SSIMFU-VISSIMFU-IRQAB/F
    IHS0.57920.60040.3361
    曲波0.66320.74430.4048
    IHS-曲波0.67320.75160.4539
    改进IHS-曲波0.67610.76110.5740
    下载: 导出CSV
  • MÅRSELL E, BOSTRÖM E, HARTH A, et al. Spatial control of multiphoton electron excitations in InAs nanowires by varying crystal phase and light polarization[J]. Nano Letters, 2018, 18(2): 907–915. doi: 10.1021/acs.nanolett.7b04267
    朱美萍, 孙建, 张伟丽, 等. 高性能偏振膜的研制[J]. 光学 精密工程, 2016, 24(12): 2908–2915. doi: 10.3788/OPE.20162412.2908

    ZHU Meiping, SUN Jian, ZHANG Weili, et al. Development of high performance polarizer coatings[J]. Optics and Precision Engineering, 2016, 24(12): 2908–2915. doi: 10.3788/OPE.20162412.2908
    CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review, 2013, 21(2): 153–181. doi: 10.2478/s11772-013-0089-3
    KWAK J Y, KO B C, and NAM J Y. Pedestrian tracking using online boosted random ferns learning in far -infrared imagery for safe driving at night[J]. IEEE Transactions on Intelligent Transportation System, 2017, 18(1): 69–81. doi: 10.1109/TITS.2016.2569159
    JEONG M R, KWAK J Y, SON J E, et al. Fast pedestrian detection using a night vision system for safety driving[C]. The 11th International Conference on Computer Graphics, Imaging and Visualization, Singapore, 2014: 69–72. doi: 10.1109/CGiV.2014.25.
    BOSIERS J T, KLEIMANN A C, VAN KUIJK H C, et al. Frame transfer CCDs for digital still cameras: Concept, design, and evaluation[J]. IEEE Transactions on Electron Devices, 2002, 49(3): 377–386. doi: 10.1109/16.987106
    王健, 高勇, 雷志勇, 等. 基于双CCD图像传感器的汽车抗晕光方法研究[J]. 传感技术学报, 2007, 20(5): 1053–1056. doi: 10.3969/j.issn.1004-1699.2007.05.023

    WANG Jian, GAO Yong, LEI Zhiyong, et al. Research of auto anti-blooming method based on double CCD image sensor[J]. Chinese Journal of Sensors and Actuators, 2007, 20(5): 1053–1056. doi: 10.3969/j.issn.1004-1699.2007.05.023
    GUO Quanmin and LI Xiaoling. Car anti-blooming method based on visible and infrared image fusion[J]. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2015(4): 115–121.
    HU Haimiao, WU Jiawei, LI Bo, et al. An adaptive fusion algorithm for visible and infrared videos based on entropy and the cumulative distribution of gray levels[J]. IEEE Transactions on Multimedia, 2017, 19(12): 2706–2719. doi: 10.1109/TMM.2017.2711422
    QIAO Tiezhu, CHEN Lulu, PANG Yusong, et al. Integrative multi-spectral sensor device for far-infrared and visible light fusion[J]. Photonic Sensors, 2018, 8(2): 134–145. doi: 10.1007/s13320-018-0401-4
    陈清江, 张彦博, 柴昱洲, 等. 有限离散剪切波域的红外可见光图像融合[J]. 中国光学, 2016, 9(5): 523–531. doi: 10.3788/CO.20160905.0523

    CHEN Qingjiang, ZHANG Yanbo, CHAI Yuzhou, et al. Fusion of infrared and visible images based on finite discrete shearlet domain[J]. Chinese Optics, 2016, 9(5): 523–531. doi: 10.3788/CO.20160905.0523
    江泽涛, 吴辉, 周哓玲. 基于改进引导滤波和双通道脉冲发放皮层模型的红外与可见光图像融合算法[J]. 光学学报, 2018, 38(2): 0210002. doi: 10.3788/AOS201838.0210002

    JIANG Zetao, WU Hui, and ZHOU Xiaoling. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 2018, 38(2): 0210002. doi: 10.3788/AOS201838.0210002
    LI Leida, XIA Wenhan, LIN Weisi, et al. No-reference and robust image sharpness evaluation based on multiscale spatial and spectral features[J]. IEEE Transactions on Multimedia, 2017, 19(5): 1030–1040. doi: 10.1109/TMM.2016.2640762
    JAIN A and BHATEJA V. A full-reference image quality metric for objective evaluation in spatial domain[C]. 2011 International Conference on Communication and Industrial Application, Kolkata, India, 2011. doi: 10.1109/ICCIndA.2011.6146668.
    CHEN Guo, LI Li, JIN Weiqi, et al. Image contrast enhancement method based on display and human visual system characteristics[J]. Applied Optics, 2019, 58(7): 1813–1823. doi: 10.1364/AO.58.001813
    XU Hailong, CHEN Yong, GU Dexian, et al. Evaluating goodness-of-fit in comparison of different expressions for length-weight relationship in fishery resources[J]. Applied Mechanics and Materials, 2014, 651-653: 337–343. doi: 10.4028/www.scientific.net/AMM.651-653.337
    徐正光, 鲍东来, 张利欣. 基于递归的二值图像连通域像素标记算法[J]. 计算机工程, 2006, 32(24): 186–188, 225. doi: 10.3969/j.issn.1000-3428.2006.24.067

    XU Zhengguang, BAO Donglai, and ZHANG Lixin. Pixel labeled algorithm based on recursive method of connecting area in binary images[J]. Computer Engineering, 2006, 32(24): 186–188, 225. doi: 10.3969/j.issn.1000-3428.2006.24.067
    叶盛楠, 苏开娜, 肖创柏, 等. 基于结构信息提取的图像质量评价[J]. 电子学报, 2008, 36(5): 856–861. doi: 10.3321/j.issn:0372-2112.2008.05.005

    YE Shengnan, SU Kaina, XIAO Chuagbai, et al. Image quality assessment based on structural information extraction[J]. Acta Electronica Sinica, 2008, 36(5): 856–861. doi: 10.3321/j.issn:0372-2112.2008.05.005
    郭全民, 王言, 李翰山. 改进IHS-Curvelet变换融合可见光与红外图像抗晕光方法[J]. 红外与激光工程, 2018, 47(11): 1126002. doi: 10.3788/IRLA201847.1126002

    GUO Quanmin, WANG Yan, and LI Hanshan. Anti-halation method of visible and infrared image fusion based on improved IHS-Curvelet transform[J]. Infrared and Laser Engineering, 2018, 47(11): 1126002. doi: 10.3788/IRLA201847.1126002
    郭全民, 董亮, 李代娣. 红外与可见光图像融合的汽车抗晕光系统[J]. 红外与激光工程, 2017, 46(8): 0818005. doi: 10.3788/IRLA201746.0818005

    GUO Quanmin, DONG Liang, and LI Daidi. Vehicles anti- halation system based on infrared and visible images fusion[J]. Infrared and Laser Engineering, 2017, 46(8): 0818005. doi: 10.3788/IRLA201746.0818005
    YU Tianshu and WANG Ruisheng. Scene parsing using graph matching on street- view data[J]. Computer Vision and Image Understanding, 2016, 145: 70–80. doi: 10.1016/j.cviu.2016.01.004
  • 期刊类型引用(12)

    1. PENG Fang,WU Jun,WANG Shuai,LI Zhijun,XIANG Jianjun. An anti-main-lobe jamming algorithm for airborne early warning radar based on APC-SVRGD joint optimization. Journal of Systems Engineering and Electronics. 2022(01): 134-143 . 必应学术
    2. 付孝龙,白渭雄,李欣,陈津津. 单脉冲雷达多通道辅助处理主瓣干扰对消方法. 华中科技大学学报(自然科学版). 2017(07): 100-104 . 百度学术
    3. 窦慧晶,陈凤菊,王千龙,肖登亮. 双息信号的斜投影滤波性能. 北京工业大学学报. 2016(05): 691-696+787 . 百度学术
    4. 吴盛源,张小宽,刘铭,田松. 雷达最佳接收极化滤波优化研究. 传感器与微系统. 2016(11): 68-70+73 . 百度学术
    5. 任博,施龙飞,王国玉. 基于环境扰动模型的干扰抑制极化滤波器性能研究. 电子学报. 2016(03): 527-534 . 百度学术
    6. 陈津津,付孝龙. 机载自卫式电子干扰对抗技术研究. 飞航导弹. 2016(06): 50-54 . 百度学术
    7. 王雪松. 雷达极化技术研究现状与展望. 雷达学报. 2016(02): 119-131 . 百度学术
    8. 任博,施龙飞,王国玉. UHF波段雷达面临基站干扰信号的极化特性测量与分析. 雷达学报. 2016(02): 164-173 . 百度学术
    9. 施龙飞,任博,马佳智,李永祯. 雷达极化抗干扰技术进展. 现代雷达. 2016(04): 1-7+29 . 百度学术
    10. 任博,罗笑冰,邓方刚,王国玉. 应用极化聚类中心设计快速自适应极化滤波器. 国防科技大学学报. 2015(04): 87-92 . 百度学术
    11. 张建军. 基于MHT的网络化雷达抗干扰算法. 计算机工程与设计. 2015(02): 415-418+451 . 百度学术
    12. 刘文钊,戴幻尧,黄振宇,崔建岭. 基于空域调制效应的干扰极化参数估计. 应用科学学报. 2015(05): 518-526 . 百度学术

    其他类型引用(11)

  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  2245
  • HTML全文浏览量:  1032
  • PDF下载量:  55
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-06-20
  • 修回日期:  2019-09-25
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-07-23

目录

    /

    返回文章
    返回