Loading [MathJax]/jax/output/HTML-CSS/jax.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多帧相位增强的米波雷达低仰角目标DOA估计方法

项厚宏 陈伯孝 杨婷 杨明磊

赵太飞, 李永明, 许杉, 王世奇. 军车隐秘编队的无线紫外光通信最优多跳中继研究[J]. 电子与信息学报, 2020, 42(11): 2636-2642. doi: 10.11999/JEIT190172
引用本文: 项厚宏, 陈伯孝, 杨婷, 杨明磊. 基于多帧相位增强的米波雷达低仰角目标DOA估计方法[J]. 电子与信息学报, 2020, 42(7): 1581-1589. doi: 10.11999/JEIT190432
Taifei ZHAO, Yongming LI, Shan XU, Shiqi WANG. Research on Optimum Multi-hop Relay of Wireless Ultraviolet Communication in Military Vehicle Secret Formation[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2636-2642. doi: 10.11999/JEIT190172
Citation: Houhong XIANG, Baixiao CHEN, Ting YANG, Minglei YANG. Low-elevation DOA Estimation for VHF Radar Based on Multi-frame Phase Feature Enhancement[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1581-1589. doi: 10.11999/JEIT190432

基于多帧相位增强的米波雷达低仰角目标DOA估计方法

doi: 10.11999/JEIT190432
基金项目: 国家自然科学基金(61571344, 61971323),中央高校基本科研业务费专项基金,西安电子科技大学研究生创新基金
详细信息
    作者简介:

    项厚宏:男,1994年生,博士生,研究方向为阵列信号处理、米波雷达测高、机器学习,深度学习

    陈伯孝:男,1966年生,教授,博士生导师,研究方向为新体制雷达系统设计及其实现、目标精确制导与跟踪、机器学习、深度学习等

    通讯作者:

    陈伯孝 bxchen@xidian.edu.cn

  • 中图分类号: TN958

Low-elevation DOA Estimation for VHF Radar Based on Multi-frame Phase Feature Enhancement

Funds: The Natural Science Foundation of China (61571344, 61971323), The Fundamental Research Funds for the Central University, Innovation Fund of Xidian Univerisity
  • 摘要:

    针对米波雷达低仰角目标的DOA估计问题,该文提出一种新的基于多帧相位特征增强方法,所提方法可以有效解决低仰角条件下阵列接收信号中直达信号相位特征模糊问题,进而提高DOA估计精度。通过学习多帧原始数据的相位分布特征与理想环境下直达波信号的相位分布特征之间的复杂映射关系,有效削弱多径信号引起的相位误差,将增强后的相位信息与原始的幅度信息进行数据重组,并利用已有的超分辨算法进行DOA估计。通过计算机仿真实验和实测数据验证,该文所提方法在DOA估计性能以及泛化能力上优于基于物理驱动的MUSIC算法以及数据驱动的基于特征反演和基于支持向量回归的两种估计方法。

  • 紫外(UltraViolet, UV)波长在200~280 nm的波段,由于臭氧分子的强烈吸收作用,使得该波段的紫外光在近地面几乎衰减为零,称该波段为“日盲区”[1]。无线紫外光通信主要利用该波段的紫外光作为载体,通过大气分子、气溶胶等微粒的散射作用进行信息的传递[2],具有非直视(Non-Line-Of-Sight, NLOS)、高保密性、低窃听率、抗干扰能力强等优点,特别适用于无人机编队飞行、海军舰艇编队、陆军装甲编队、导弹车车队在无线电静默和复杂环境下的军事隐秘通信[3,4]。但由于紫外光的散射通信以及大气湍流的偏折作用,大气信道衰减严重、接收信号微弱、具有高路径损耗等,使得紫外光通信传输距离有限[5]。因此,通过多跳中继方式来延长无线紫外光通信距离成为研究的热点。

    目前已有学者对紫外光多跳中继通信进行了相关研究,文献[6]在紫外光通信网中通过多跳中继方式增加了通信范围,并节省了功率消耗。文献[7]研究了紫外光多跳中继通信中节点连通问题,适当调整节点密度、发射功率和数据速率,使得紫外光多跳中继通信网络中中继孤立节点存在的概率趋近于零。文献[8]针对紫外光通信中光源器件发射功率受限和大气信道衰减严重造成传输距离近的问题,提出采用多跳中继方式构建紫外光长距离通信链路,提高了系统功率利用率。文献[9]研究结果表明,选择合适的无线紫外光通信系统配置对提高多跳中继通信系统性能是至关重要的。

    上述研究都是建立在节点等距离分布下的性能研究,而对于紫外光多跳中继通信系统中节点随机分布的最优跳数问题研究较少。文献[10]为减少无线传感器网络节点的能量消耗,使用紫外光作为信息载体,在等距离分布下得出了使能量消耗最低的最优跳数表达式。但研究未考虑紫外光通信系统配置问题,而紫外光通信的整体性能高度依赖于系统配置,特别是收发仰角[9]。因此,本文基于无线紫外光非直视单次散射模型,研究了车队中车辆在随机分布状态下无线紫外光多跳中继通信的收发仰角与最优跳数的关系,根据信道容量和路径损耗得出两者之间的近似表达式,并分析了不同收发仰角下的系统性能。

    由于大气对紫外光强散射作用,使紫外光通信信道能够构成非直视通信链路。实际中紫外光通信是多次散射的,但在短距离通信中,单次散射传输为主[11],因此本文以单次散射模型作为研究基础。紫外光单次散射模型如图1所示[12]βT是发射仰角,βR是接收仰角,θT是发散角,θR是接收视场角,V是有效散射体,θS是散射角,r是收发端基线距离。

    图 1  无线紫外光非直视单次散射通信模型

    发射端TXβTθT的角度向空间发射光信号,光信号在有效散射体V内散射后,接收端RXβRθR的角度进行光信号接收,则紫外光单次散射通信的接收光功率为[12]

    Pr=PtArKsPsθRθ2Tsin(βT+βR)32π3rsinβT(1cosθT2)exp[Ker(sinβT+sinβR)sin(βT+βR)] (1)

    其中,Pt是发射光功率,Ar是接收孔径面积,Ks是大气散射系数,Ps是散射角θs的相函数,Ke是大气信道衰减系数,且Ke=Ka+Ks, Ka是大气吸收系数。

    非直视紫外光散射通信的路径损耗可表示为发射光功率与接收光功率的比值,如式(2)所示

    L=PtPr=32π3rsinβT(1cosθT2)ArKsPsθRθ2Tsin(βT+βR)exp[Ker(sinβT+sinβR)sin(βT+βR)] (2)

    式(2)为路径损耗计算表达式,只适用于收发仰角较小的状态,当收发仰角较大时,不再适用于分析非直视紫外光散射通信。而在实际应用中当通信距离小于1 km时,通常采用路径损耗简化公式[13]

    L=ξrα (3)

    其中,ξ是路径损耗因子,α是路径损耗指数,其都是与收发仰角有关的参数。

    本文研究的紫外光多跳通信结构模型,考虑1维N跳网络结构且每跳的距离是随机性的,其无线紫外光多跳中继节点随机分布模型如图2所示,当r1=r2=···=rN=d/N时,即为等距离分布。紫外光多跳中继通信系统有一个源节点S,一个目的节点D, N–1个中继节点Ri (i=1, 2, ···, N–1),且Ri随机分布在S到D的距离范围内。假设所有节点采用半双工通信方式,考虑经典N跳时分解码转发协议,每个中继节点Ri接收Ri–1发送的信息,并解码转发到Ri+1节点。

    图 2  无线紫外光多跳中继节点随机分布模型

    假设中继节点位置是独立随机变量,并设Xi是第i个中继节点在S到D间的随机位置,则Xi的概率密度函数为[14]

    f(Xi)={1rδ,  r(iδ2)Xir(i+δ2)0,其他 (4)

    其中,r=d/N是等分距离,d是S到D的实际距离,δ[0,1]是随机偏移范围,其表征中继节点位置的随机性或者不确定性。

    定义ri=XiXi1(i=2,3,···,N1),特别地,r1=X1, rN=dXN1,则ri的累积分布函数表示为

    对于i=1或N时,

    F(ri)={0,rir(1δ2)1rδ(rir(1δ2)),  r(1δ2)rir(1+δ2)1,rir(1+δ2) (5)

    对于i=2, 3, ···, N–1时,

    F(ri)={0,rir(1δ)12(1rδ)2[rir(1δ)]2,  r(1δ)rir12(1rδ)2[r(1+δ)ri]2,  rrir(1+δ)1,rir(1+δ) (6)

    根据紫外光NLOS单次散射模型,其紫外光通信在量子极限条件下的信噪比为[12]

    γSNR=ηfηrPtλ2hcBL=μξ1rα (7)

    其中,μ=ηfηrPtλ2hcB, ηfηr分别表示滤光片透过率和光电倍增管(Photo Multiplier Tube, PMT)探测效率,λ是紫外波长,h是普朗克常数,c是光速,B=Kec2π是紫外光通信信道带宽。

    利用香农公式可以计算出紫外光NLOS通信的信道容量[12],则紫外光单跳通信的频谱效率为

    ηsh=log2(1+μξ1dα) (8)

    在源节点到目的节点等距离分布N跳通信传输时,假设在任何时间点上只有一个节点进行传输,即在接收端无干扰,且每个节点在1/N时间传输相同的信息量,则每跳频谱效率是单跳通信的N倍,其等距离分布的频谱效率为

    ηeq=1Nlog2(1+μξ1(dN)α) (9)

    从式(9)可以看出频谱效率与跳数和收发仰角有关,因此研究使用近似理想路径路由计算方法[15],通过最大化频谱效率得到紫外光多跳中继通信系统节点等距离分布下的最优跳数近似表达式为

    Nop=argmaxηeq[(2ε1γ)1/α]+ (10)

    其中,ε=α+w(αeα)ln2是仅取决于路径损耗指数的常数,w()是郎伯W函数的主分支[16], γ=μξ1dα是单跳情况下的接收信噪比。

    从式(10)可以看出最优跳数受到收发仰角的影响,在基于等距离分布的分析下,对中继节点随机分布时最优跳数进行了分析。在节点随机分布时,系统性能将取决于N跳中最长的一跳[17],则在此情况下频谱效率度量将是最长一跳距离上的平均值,如式(11)所示

    ¯η=Ermax[1Nlog2(1+μξ1rαmax)] (11)

    其中,rmax=maxi=1,,Nri, E[]是期望算子。

    为了求解节点随机分布下最优跳数值,需要求得¯η的闭合表达式,由式(5)和式(6)的累积分布函数可得

    rrmaxr(1+δ) (12)

    对式(11)应用Jensen不等式E[f(x)]f(E[x]),则式(11)变换如式(13)所示

    E[log2(1+μξ1rαmax)]log2(1+μξ1(E[rmax])α) (13)

    根据式(13),联合式(11)和式(12)求解得到¯η的上下界

    1Nlog2(1+μξ1(dN(1+δ))α)¯η1Nlog2(1+μξ1(dN)α) (14)

    根据等距离分布最优跳数近似值的分析过程,求解式(14)的¯η下界最大化,即节点随机分布的最优跳数近似求解式如式(15)所示

    Nop[(2ε1γ)1/α]+ (15)

    其中,γ=μξ1dα(1+δ)α是最大距离单跳情况下节点随机分布的接收信噪比。

    在节点随机分布情况下,通过式(15)求解得到的最优跳数值是源节点到目的节点多跳中继通信中的最大值。当δ=0时,式(15)等于式(10),最优跳数值达到最小值,即紫外光通信链路的频谱效率有最大值。

    通常在车队中车辆与车辆之间的距离根据车速应保持在30~100 m,而整个车队的最大距离不超过1~3 km[18]。基于此参数规定和最优跳数的分析,对节点等距离分布和随机分布的两种情况进行了仿真分析。其仿真实验的主要参数见表1

    表 1  系统主要仿真参数
    参数数值
    紫外波长260 nm
    PMT探测效率0.3
    滤光片透过率0.6
    吸收系数0.802×10–3 m–1
    米氏散射系数0.284×10–3 m–1
    瑞利散射系数0.266×10–3 m–1
    普朗克常数h6.6×10–34
    下载: 导出CSV 
    | 显示表格

    在车队中车辆等间隔匀速运动时,通常满足节点等距离分布状态,即δ=0。根据不同收发仰角下ξα的取值分析[14],在Pt=30 mW, d=500 m和等距离分布情况下,本文对βT<βR, βT=βRβT>βR 3种不同状态的收发仰角的单跳通信、多跳通信和最优跳通信进行了仿真,在d=500 m的多跳通信中,设定最大通信跳数为9跳,即车队有10辆车辆,其他仿真参数如表1所示,分析了3种通信方式的性能。从图3图4图5可以看出,当发射功率大于18 mW时,针对不同的收发仰角求得的最优跳数值都要比单跳通信和9跳通信获得较好的通信传输能力。

    图 3  βT=10°, βR=40°的3种通信方式对比
    图 4  βT=βR=30°的3种通信方式对比
    图 5  βT=40°, βR=20°的3种通信方式对比

    另外,对比分析了相同最优跳数值下的不同收发仰角的频谱效率。从图6(a)图6(b)可以看出,在相同最优跳数值下,紫外光通信的收发仰角对通信传输能力有着较大的影响。并且在紫外光多跳中继通信系统中,当有相同跳数时,使用小发射仰角和大接收仰角,能够使紫外光多跳通信系统获得更好的通信性能。

    图 6  相同Nop下的不同收发仰角频谱效率

    基于等距离分布模型的分析结果,将本文等距离分布下的最大频谱效率计算方法与最优能量计算方法进行对比分析。在βT<βR的紫外光几何结构配置下,不同方法下最优跳数和通信传输能力的对比情况如图7图8所示。从图7可以看出两种方法的效果能够基本达到一致。当发射仰角固定时,增大接收仰角角度,其最优跳数随着通信距离的增加,最大频谱效率计算方法比最优能量计算方法的跳数值多一个数量级。

    图 7  最优跳数对比
    图 8  两种方法传输能力对比

    图8是根据图7d=600 m时的最优跳数的分界点值的性能对比。此时,最大频谱效率计算方法最优跳数为6,最优能量计算方法最优跳数为5。从图8可以看出,当采用小功率传输时,最大频谱效率计算方法的通信传输能力优于最优能量计算方法,同时也达到节约功率的需求。在等距离分布模型下,当源节点到目的节点的通信距离确定时,根据无线紫外光通信的收发仰角得到适当的中继数,能够使整体通信传输能力达到最大。

    当车队在行驶中根据路况和调配信息,随时调整车速,此过程导致车队处于非匀速状态,不再满足等距离分布。本节对节点随机分布下的最优跳数进行了仿真分析。主要仿真参数如表1所示,在发射功率Pt=30 mW, S到D的距离d=500 m下,对比分析了不同随机偏移范围下的不同收发仰角的频谱效率与跳数的关系。从图9(a)图9(b)图9(c)图9(d)可以看出,在紫外光多跳通信系统中,随着δ的增加系统总体性能呈下降趋势。并且不同收发仰角在不同随机偏移范围下,都存在一个使总体系统的频谱效率下界达到最大值的最优跳数值。通过图9进一步可以看出在紫外光中继通信系统中,使用小发射仰角和大接收仰角系统配置,能够使紫外光多跳通信系统获得更好的传输能力。

    图 9  不同距离移位范围的频谱效率

    为进一步说明随机分布模型的实际应用,本文在Pt=30 mW和δ=0.2下,对比分析了βT<βRβT>βR下的收发端距离变化的频谱效率与跳数的关系,如图10所示。从图10可以看出,频谱效率随着跳数的增加存在最大值,并且随着S到D距离的增加,当达到最优跳数时,频谱效率不再随着跳数的增加有较大的变化。进一步说明当紫外光长距离通信时,并不是跳数越多其通信性能就越好。

    图 10  不同S到D距离的频谱效率

    本文针对车队中车辆在等距离和随机分布状态下的最优跳数进行了研究。基于非直视紫外光单次散射模型、信道容量和路径损耗,依据使频谱效率最大化原则,得出计算收发仰角与频谱效率的近似关系表达式。通过分析等距离分布最优跳数,求得随机分布的最优跳数近似表达式。仿真结果表明,收发仰角影响着紫外光多跳中继通信系统的最优跳数。不同随机偏移范围和不同收发仰角都对应特定的最优跳数,与最优能量计算方法相比,最大频谱效率计算方法在发射功率小于25 mW时有更好的信息传输能力,并达到节约功率的需求。在紫外光长距离通信时,选取合适的中继数及小发射仰角和大接收仰角的几何结构配置,不仅能够提高车队间无线紫外光多跳中继通信系统的传输能力,也满足车队间保持稳定可靠的隐秘通信需求。

  • 图  1  信号模型

    图  2  幅相敏感度分析

    图  3  相位增强系统框图

    图  4  深度神经网络结构

    图  5  深度卷积神经网络结构

    图  6  信噪比匹配条件下,DNN增强的RMSE与信噪比关系曲线

    图  7  信噪比匹配条件下,CNN增强的RMSE与信噪比关系曲线

    图  8  信噪比匹配条件下,DNN增强的GOF与信噪比关系曲线

    图  9  信噪比匹配条件下,CNN增强的GOF与信噪比关系曲线

    图  10  误差匹配条件下DNN增强的RMSE与相位误差关系曲线

    图  11  误差匹配条件下CNN增强的RMSE与相位误差关系曲线

    图  12  误差匹配条件下DNN增强的GOF与相位误差关系曲线

    图  13  误差匹配条件下CNN增强的GOF与相位误差关系曲线

    图  14  信噪比失配条件下DNN增强的RMSE与信噪比关系曲线

    图  15  信噪比失配条件下CNN增强的RMSE与信噪比关系曲线

    图  16  信噪比失配条件下DNN增强的GOF与信噪比关系曲线

    图  17  信噪比失配条件下CNN增强的GOF与信噪比关系曲线

    图  18  误差失配条件下DNN增强的RMSE与相位误差关系曲线

    图  19  误差失配条件下CNN增强的RMSE与相位误差关系曲线

    图  20  误差失配条件下DNN增强的GOF与相位误差关系曲线

    图  21  误差失配条件下CNN增强的GOF与相位误差关系曲线

    图  22  相位增强前后分布图

    图  23  目标航迹图和测角结果图

    图  24  DNN增强后测角误差

    图  25  CNN增强后测角误差

    表  1  深度神经网络结构配置

    网络结构激活函数学习率初始化方式
    x×1024×1024×1024×oReLU10–4高斯随机初始化
    下载: 导出CSV

    表  2  深度卷积神经网络结构配置

    网络结构卷积核大小池化层大小激活函数学习率初始化方式
    2层卷积层3×1×151×3ReLU10–4高斯随机
    3层全连接层3×15×30初始化
    下载: 导出CSV

    表  3  有效点数占比(%)

    方法DBFSSMUSIC3帧DNN5帧DNN7帧DNN3帧CNN5帧CNN7帧CNN
    占比1.80.295.693.589.885.181.172.7
    下载: 导出CSV
  • 朱伟. 米波数字阵列雷达低仰角测高方法研究[D]. [博士论文], 西安电子科技大学, 2013.

    ZHU Wei. Study on low-angle altitude measurement in VHF Radar[D]. [Ph.D. dissertation], Xidian University, 2013.
    郑轶松. 米波阵列雷达低仰角测高若干问题研究[D]. [博士论文], 西安电子科技大学, 2017.

    ZHENG Yisong. Study on some issues of low-angle altitude measurement for VHF array radar[D]. [Ph.D. dissertation], Xidian University, 2017.
    李存勖. 米波雷达低仰角测高相关问题研究[D]. [博士论文], 西安电子科技大学, 2018.

    LI Cunxu. Study on some issues of altitude measurement of low-angle target for VHF array radar[D]. [Ph.D. dissertation], Xidian University, 2018.
    陈伯孝, 胡铁军, 郑自良, 等. 基于波瓣分裂的米波雷达低仰角测高方法及其应用[J]. 电子学报, 2007, 35(6): 1021–1025. doi: 10.3321/j.issn:0372-2112.2007.06.003

    CHEN Baixiao, HU Tiejun, ZHENG Ziliang, et al. Method of altitude measurement based on beam Split in VHF radar and its application[J]. Acta Electronica Sinica, 2007, 35(6): 1021–1025. doi: 10.3321/j.issn:0372-2112.2007.06.003
    ZHU Wei and CHEN Baixiao. Altitude measurement based on terrain matching in VHF array radar[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 647–662. doi: 10.1007/s00034-012-9472-4
    郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013

    ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553–1560. doi: 10.1109/29.7543
    CHOI Y H. Alternating projection for maximum-likelihood source localization using eigendecomposition[J]. IEEE Signal Processing Letters, 1999, 6(4): 73–75. doi: 10.1109/97.752057
    WU Bo, LI Kehuang, GE Fengpei, et al. An end-to-end deep learning approach to simultaneous speech dereverberation and acoustic modeling for robust speech recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(8): 1289–1300. doi: 10.1109/JSTSP.2017.2756439
    WU Bo, LI Kehuang, YANG Minglei, et al. A reverberation-time-aware approach to speech dereverberation based on deep neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(1): 102–111. doi: 10.1109/TASLP.2016.2623559
    XIANG Houhong, CHEN Baixiao, YANG Minglei, et al. Altitude measurement based on characteristics reversal by deep neural network for VHF radar[J]. IET Radar, Sonar & Navigation, 2019, 13(1): 98–103. doi: 10.1049/iet-rsn.2018.5121
    WU Liuli and HUANG Zhitao. Coherent SVR learning for wideband direction-of-arrival estimation[J]. IEEE Signal Processing Letters, 2019, 26(4): 642–646. doi: 10.1109/LSP.2019.2901641
    WERBOS P J. Backpropagation through time: What it does and how to do it[J]. Proceedings of the IEEE, 1990, 78(10): 1550–1560. doi: 10.1109/5.58337
    LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541–551. doi: 10.1162/neco.1989.1.4.541
    KINGMA D P and BA J. Adam: A method for stochastic optimization[J]. arXiv: 2014, 1412.6980.
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  2340
  • HTML全文浏览量:  1038
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-13
  • 修回日期:  2019-10-08
  • 网络出版日期:  2020-02-05
  • 刊出日期:  2020-07-23

目录

/

返回文章
返回