高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进循环生成式对抗网络的图像风格迁移

张惊雷 厚雅伟

张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移[J]. 电子与信息学报, 2020, 42(5): 1216-1222. doi: 10.11999/JEIT190407
引用本文: 张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移[J]. 电子与信息学报, 2020, 42(5): 1216-1222. doi: 10.11999/JEIT190407
Jinglei ZHANG, Yawei HOU. Image-to-image Translation Based on Improved Cycle-consistent Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1216-1222. doi: 10.11999/JEIT190407
Citation: Jinglei ZHANG, Yawei HOU. Image-to-image Translation Based on Improved Cycle-consistent Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1216-1222. doi: 10.11999/JEIT190407

基于改进循环生成式对抗网络的图像风格迁移

doi: 10.11999/JEIT190407
详细信息
    作者简介:

    张惊雷:男,1969,教授,博士,研究方向为模式识别、图像处理等

    厚雅伟:男,1995,硕士生,研究方向为图像处理、目标检测等

    通讯作者:

    张惊雷 zhangjinglei@tjut.edu.cn

  • 中图分类号: TN911.73; TP317

Image-to-image Translation Based on Improved Cycle-consistent Generative Adversarial Network

  • 摘要:

    图像间的风格迁移是一类将图片在不同领域进行转换的方法。随着生成式对抗网络在深度学习中的快速发展,其在图像风格迁移领域中的应用被日益关注。但经典算法存在配对训练数据较难获取,生成图片效果差的缺点。该文提出一种改进循环生成式对抗网络(CycleGAN++),取消了环形网络,并在图像生成阶段将目标域与源域的先验信息与相应图片进行纵深级联;优化了损失函数,采用分类损失代替循环一致损失,实现了不依赖训练数据映射的图像风格迁移。采用CelebA和Cityscapes数据集进行实验评测,结果表明在亚马逊劳务平台感知研究(AMT perceptual studies)与全卷积网络得分(FCN score)两个经典测试指标中,该文算法比CycleGAN, IcGAN, CoGAN, DIAT等经典算法取得了更高的精度。

  • 图  1  CycleGAN中单向GAN网络结构图

    图  2  CycleGAN++的网络结构

    图  3  CycleGAN++的生成网络

    图  4  CycleGAN++的判别网络

    图  5  CycleGAN与CycleGAN++的训练过程对比

    图  6  CycleGAN++在人物性别转换领域下的可视化结果

    图  7  CycleGAN++与原算法在CelebA测试集下的对比

    图  8  CycleGAN++与原算法在Cityscapes测试集下的对比

    表  1  CycleGAN+与原算法的AMT测试结果对比(%)

    方法男性→女性女性→男性照片→标签标签→照片
    CycleGAN24.6±2.321.1±1.826.8±2.823.2±3.4
    CycleGAN+29.5±3.229.2±4.127.8±2.228.2±2.4
    下载: 导出CSV

    表  2  CycleGAN+与原算法的FCN得分结果对比

    方法每像素精度每类精度IoU分类
    CycleGAN0.520.170.11
    CycleGAN+0.600.210.16
    下载: 导出CSV

    表  3  CycleGAN++与CycleGAN+的AMT感知研究结果对比(%)

    方法男性→女性女性→男性照片→标签标签→照片
    CycleGAN+29.5±3.229.2±4.127.8±2.228.2±2.4
    本文CycleGAN++31.4±3.832.6±4.730.1±2.630.9±2.7
    下载: 导出CSV

    表  4  CycleGAN++与CycleGAN+的FCN得分结果对比

    方法每像素精度每类精度IoU分类
    CycleGAN+0.600.210.16
    本文CycleGAN++0.690.270.23
    下载: 导出CSV

    表  5  各算法的AMT感知研究结果对比(%)

    方法男性→女性女性→男性照片→标签标签→照片
    CycleGAN[12]24.6±2.321.1±1.826.8±2.823.2±3.4
    IcGAN[22]23.2±2.522.4±2.922.8±2.619.8±1.9
    CoGAN[10]6.8±1.15.1±0.90.6±0.50.9±0.5
    DIAT[21]31.1±3.930.2±3.628.4±2.927.2±2.5
    本文CycleGAN++31.4±3.832.6±4.730.1±2.630.9±2.7
    下载: 导出CSV

    表  6  各算法的FCN得分结果对比

    方法每像素精度每类精度IoU分类
    CycleGAN[12]0.520.170.11
    IcGAN[22]0.430.110.07
    CoGAN[10]0.400.100.06
    DIAT[21]0.680.240.21
    本文CycleGAN++0.690.270.23
    下载: 导出CSV
  • HERTZMANN A, JACOBS C E, OLIVER N, et al. Image analogies[C]. The 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 2001: 327–340. doi: 10.1145/383259.383295.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. https://arxiv.org/abs/1511.06434, 2015.
    ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[EB/OL]. https://arxiv.org/abs/1701.07875, 2017.
    GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017: 5769–5779.
    ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5967–5976. doi: 10.1109/CVPR.2017.632.
    MIRZA M and OSINDERO S. Conditional generative adversarial nets[EB/OL]. https://arxiv.org/abs/1411.1784, 2014.
    ROSALES R, ACHAN K, and FREY B. Unsupervised image translation[C]. The 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 472–478. doi: 10.1109/ICCV.2003.1238384.
    LIU Mingyu, BREUEL T, KAUTZ J, et al. Unsupervised image-to-image translation networks[C]. The 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 700–708.
    LIU Mingyu and TUZEL O. Coupled generative adversarial networks[C]. The 30th Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 469–477.
    KINGMA D P and WELLING M. Auto-encoding variational bayes[EB/OL]. https://arxiv.org/abs/1312.6114, 2013.
    ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251. doi: 10.1109/ICCV.2017.244.
    KIM T, CHA M, KIM H, et al. Learning to discover cross-domain relations with generative adversarial networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1857–1865.
    YI Zili, ZHANG Hao, TAN Ping, et al. DualGAN: Unsupervised dual learning for image-to-image translation[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2868–2876. doi: 10.1109/ICCV.2017.310.
    BOUSMALIS K, SILBERMAN N, DOHAN D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 95–104. doi: 10.1109/CVPR.2017.18.
    SHRIVASTAVA A, PFISTER T, TUZEL O, et al. Learning from simulated and unsupervised images through adversarial training[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2242–2251. doi: 10.1109/CVPR.2017.241.
    TAIGMAN Y, POLYAK A, and Wolf L. Unsupervised cross-domain image generation[EB/OL]. https://arxiv.org/abs/1611.02200, 2016.
    LI Chuan and WAND M. Precomputed real-time texture synthesis with markovian generative adversarial networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 702–716. doi: 10.1007/978-3-319-46487-9_43.
    LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3730–3738. doi: 10.1109/ICCV.2015.425.
    KINGMA D P and BA J. Adam: A method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980, 2014.
    LI Mu, ZUO Wangmeng, and ZHANG D. Deep identity-aware transfer of facial attributes[EB/OL]. https://arxiv.org/abs/1610.05586, 2016.
    PERARNAU G, VAN DE WEIJER J, RADUCANU B, et al. Invertible conditional GANs for image editing[EB/OL]. https://arxiv.org/abs/1611.06355, 2016.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  4860
  • HTML全文浏览量:  2054
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-12-23
  • 网络出版日期:  2019-12-31
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回