高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有卸载压缩激励的云增强FiWi网络节能机制

彭海英 王泽东 吴大鹏

彭海英, 王泽东, 吴大鹏. 带有卸载压缩激励的云增强FiWi网络节能机制[J]. 电子与信息学报, 2020, 42(7): 1726-1733. doi: 10.11999/JEIT190405
引用本文: 彭海英, 王泽东, 吴大鹏. 带有卸载压缩激励的云增强FiWi网络节能机制[J]. 电子与信息学报, 2020, 42(7): 1726-1733. doi: 10.11999/JEIT190405
Haiying PENG, Zedong WANG, Dapeng WU. Energy Saving Mechanism with Incentive of Offloading Compression in Cloudlet Enhanced Fiber-Wireless Network[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1726-1733. doi: 10.11999/JEIT190405
Citation: Haiying PENG, Zedong WANG, Dapeng WU. Energy Saving Mechanism with Incentive of Offloading Compression in Cloudlet Enhanced Fiber-Wireless Network[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1726-1733. doi: 10.11999/JEIT190405

带有卸载压缩激励的云增强FiWi网络节能机制

doi: 10.11999/JEIT190405
基金项目: 国家自然科学基金(61771082, 61871062);重庆市高校创新团队建设计划(CXTDX201601020)
详细信息
    作者简介:

    彭海英:女,1973年生,副教授,研究方向为光无线融合网络

    王泽东:男,1993年生,硕士生,研究方向为光无线融合网络

    吴大鹏:男,1979年生,教授,博士,研究方向为泛在无线网络、社会计算、互联网服务质量控制等

    通讯作者:

    王泽东 917251201@qq.com

  • 中图分类号: TN926, TP393

Energy Saving Mechanism with Incentive of Offloading Compression in Cloudlet Enhanced Fiber-Wireless Network

Funds: The National Natural Science Foundation of China (61771082, 61871062); Chongqing Funded Project of Chongqing University Innovation Team Construction (CXTDX201601020)
  • 摘要:

    针对云增强型光纤-无线(FiWi)网络能耗以及卸载的通信开销过大问题,该文提出一种自适应卸载压缩节能机制(ESAOC),针对不同类型的业务属性和最大的容忍时延,结合光网络单元的负载变化和无线网状网的流量情况,通过统计的方式获得不同优先级卸载数据的平均到达率,再结合各个节点的压缩时延,动态调整业务的卸载压缩比,以降低卸载的通信开销;同时,建立排队模型分析卸载业务在MEC服务器的排队时延,协同调度无线侧中继节点,进而对光网络单元和终端设备进行协同休眠调度,最大化休眠时长,提高系统能源效率。结果表明,所提方法在有效降低整个网络能耗的同时能够保证卸载业务的时延性能。

  • 图  1  带有MEC卸载压缩激励的FiWi网络架构

    图  2  回传时延感知ONU休眠

    图  3  不同优先级业务的端到端时延

    图  6  不同压缩比下的压缩时延

    图  4  不同算法对应的业务响应时延

    图  5  不同负载下的ONU总能耗

    图  7  节点数与压缩能耗关系

    表  1  仿真参数设置

    参数设定参数数值
    网络区域(m2)500×500
    ONU数目N(个)8
    Mesh节点数目${N_w}$(个)20
    STA数目W(个)50
    ONU活跃状态能耗(W)5.05
    ONU休眠状态能耗(W)0.75
    平均卸载分组大小(kb)128.5
    节点处理能力$\tau $(ns/b)0.35
    压缩参数$\beta $5
    压缩能耗系数$\varepsilon $(nJ/b)8
    ${R_{\rm{mes} }}$(Mbit/s)6900
    ${R_{\rm{O}} }$(Gbit/s)1
    ${T_{\rm{O} \to {\rm{M}} }}$(μs)50
    ONU保护时隙(μs)40
    控制帧时隙(μs)0.5
    ${\xi _0}$(cycles/bit)500
    ${f_0}$(cycles/s)$3.2 \times {10^9}$
    下载: 导出CSV
  • 吴大鹏, 李雪, 李红霞. 基于TWDM-PON与C-RAN的QoE感知视频协作缓存与传输机制[J]. 通信学报, 2019, 40(3): 80–91. doi: 10.11959/j.issn.1000-436x.2019066

    WU Dapeng, LI Xue, and LI Hongxia. QoE-aware video cooperative caching and transmission mechanism based on TWDM-PON and C-RAN[J]. Journal on Communications, 2019, 40(3): 80–91. doi: 10.11959/j.issn.1000-436x.2019066
    王汝言, 徐宁宁, 吴大鹏. 能耗和时延感知的虚拟化云无线接入网络资源分配机制[J]. 电子与信息学报, 2019, 41(1): 83–90. doi: 10.11999/JEIT180063

    WANG Ruyan, XU Ningning, and WU Dapeng. Energy consumption and delay-aware resource allocation mechanism for virtualization cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(1): 83–90. doi: 10.11999/JEIT180063
    AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458
    XU Yi and MAO Shiwen. A survey of mobile cloud computing for rich media applications[J]. IEEE Wireless Communications, 2013, 20(3): 46–53. doi: 10.1109/MWC.2013.6549282
    吴大鹏, 吴光锴, 王汝言. 带有上行数据帧聚合的光无线融合接入网络节能机制[J]. 电子与信息学报, 2018, 40(3): 690–696. doi: 10.11999/JEIT170508

    WU Dapeng, WU Guangkai, and WANG Ruyan. Energy-saving mechanism of integrated fiber-wireless access network with uplink data frame aggregation[J]. Journal of Electronics &Information Technology, 2018, 40(3): 690–696. doi: 10.11999/JEIT170508
    RIMAL B P, VAN D P, and MAIER M. Mobile edge computing empowered fiber-wireless access networks in the 5G era[J]. IEEE Communications Magazine, 2017, 55(2): 192–200. doi: 10.1109/MCOM.2017.1600156CM
    LI Xiaoyang, YOU Changsheng, ANDREEV S, et al. Wirelessly powered crowd sensing: Joint power transfer, sensing, compression, and transmission[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 391–406. doi: 10.1109/JSAC.2018.2872379
    KOLO J G, SHANMUGAM S A, LIM D W G, et al. Fast and efficient lossless adaptive compression scheme for wireless sensor networks[J]. Computers & Electrical Engineering, 2015, 41: 275–287. doi: 10.1016/j.compeleceng.2014.06.008
    LIU Luning, CHEN Xin, LU Zhaoming, et al. Mobile-edge computing framework with data compression for wireless network in energy internet[J]. Tsinghua Science and Technology, 2019, 24(3): 271–280. doi: 10.26599/TST.2018.9010124
    XU Ding, LI Qun, and ZHU Hongbo. Energy-saving computation offloading by joint data compression and resource allocation for mobile-edge computing[J]. IEEE Communications Letters, 2019, 23(4): 704–707. doi: 10.1109/LCOMM.2019.2897630
    ZHANG Wei, WEN Yonggang, ZHANG Yingjun, et al. Mobile cloud computing with voltage scaling and data compression[C]. The 18th International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017: 1–5. doi: 10.1109/SPAWC.2017.8227788.
    REN Jinke, YU Guanding, CAI Yunlong, et al. Latency optimization for resource allocation in mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5506–5519. doi: 10.1109/TWC.2018.2845360
    ALVI S A, ZHOU Xiangyun, and DURRANI S. Optimal compression and transmission rate control for node-lifetime maximization[J]. IEEE Transactions on Wireless Communications, 2018, 17(11): 7774–7788. doi: 10.1109/TWC.2018.2870870
    HU Weizheng, ZHANG Wei, HU Han, et al. Toward joint compression-transmission optimization for green wearable devices: An energy-delay tradeoff[J]. IEEE Internet of Things Journal, 2017, 4(4): 1006–1018. doi: 10.1109/JIOT.2017.2704605
    ZHAO Tianchu, ZHOU Sheng, GUO Xueying, et al. A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing[C]. 2015 IEEE Globecom Workshops, San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOMW.2015.7414063.
    LIU Yejun, GUO Lei, ZHANG Lincong, et al. A new integrated energy-saving scheme in green Fiber-Wireless (FiWi) access network[J]. Science China Information Sciences, 2014, 57(6): 1–15. doi: 10.1007/s11432-013-4958-7
    RIMAL B P, VAN D P, and MAIER M. Mobile-edge computing vs. centralized cloud computing in fiber-wireless access networks[C]. 2016 IEEE Conference on Computer Communications Workshops, San Francisco, USA, 2016: 1–6. doi: 10.1109/INFCOMW.2016.7562226.
    CHOWDHURY M and MAIER M. Collaborative computing for advanced tactile internet human-to-robot (H2R) communications in integrated FiWi multirobot infrastructures[J]. IEEE Internet of Things Journal, 2017, 4(6): 2142–2158. doi: 10.1109/JIOT.2017.2761599
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2579
  • HTML全文浏览量:  1502
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2020-02-28
  • 网络出版日期:  2020-04-09
  • 刊出日期:  2020-07-23

目录

    /

    返回文章
    返回