Video Dehazing Algorithm via Haze-line Prior with Spatiotemporal Correlation Constraint
-
摘要: 现有视频去雾算法由于缺少对视频结构关联约束和帧间一致性分析,容易导致连续帧去雾结果在颜色和亮度上存在突变,同时去雾后的前景目标边缘区域也容易出现退化现象。针对上述问题,该文提出一种基于雾线先验的时空关联约束视频去雾算法,通过引入每帧图像在空间邻域中具有的结构关联性和时间邻域中具有的连续一致性,提高视频去雾算法的求解准确性和鲁棒性。算法首先使用暗通道先验估计每帧图像的大气光向量,并结合雾线先验求取初始透射率图。然后引入加权最小二乘边缘保持平滑滤波器对初始透射率图进行空间平滑,消除奇异点和噪声对估计结果的影响。进一步利用相机参数刻画连续帧间透射率图的时序变化规律,对独立求取的每帧透射率图进行时序关联修正。最后根据雾图模型获得最终的视频去雾结果。定性和定量的对比实验结果表明,该算法下视频去雾结果的帧间过渡更加自然,同时对每一帧图像的色彩还原更加准确,图像边缘的细节信息显示也更加丰富。Abstract: Because of the existent video dehazing algorithm lacks the analysis of the video structure correlation constraint and inter-frame consistency, it is easy to cause the dehazing results of continuous frames to have sudden changes in color and brightness. Meanwhile, the edge of foreground target is also prone to degradation. Focus on the aforementioned problems, a novel video dehazing algorithm via haze-line prior with spatiotemporal correlation constraint is proposed, which improves the accuracy and robustness of video dehazing result by bringing the structural relevance and temporal consistency of each frame. Firstly, the dark channel and haze-line prior are utilized to estimate the atmospheric light vector and initial transmission image of each frame. Then a weighted least square edge preserving smoothing filter is introduced to smooth the initial transmission image and eliminate the influence of singularities and noises on the estimated results. Furthermore, the camera parameters are calculated to describe the time series variation of the transmission image between continuous frames, and the independently obtained transmission image of each frame is corrected with temporal correlation constraint. Finally, according to the physical model, the video dehazing results are obtained. The experimental results of qualitative and quantitative comparison show that the proposed algorithm could make the inter-frame transition more smooth, and restore the color of each frame more accurately. Besides, more details are displayed at the edge of the dehazing results.
-
Key words:
- Video dehazing /
- Spatial smoothing /
- Temporal correlation constraint /
- Haze-line prior
-
表 1 各算法在不同评价指标下的性能对比
视频集 算法 VCM SSIM HCC 信息熵 UQI Bali 文献[16]算法 47.7398±4.3502 0.6614±0.0459 –0.3173±0.0485 6.8571±0.1641 0.5923±0.0425 文献[17]算法 30.1254±5.6277 0.5526±0.0215 –0.2960±0.0326 7.3794±0.0792 0.4669±0.0225 文献[19]算法 41.6247±4.9448 0.8693±0.0041 –0.0813±0.0581 7.5121±0.0447 0.8061±0.0086 文献[20]算法 37.4402±4.0238 0.6221±0.0214 –0.1968±0.1061 6.5753±0.1445 0.5889±0.0335 文献[21]算法 49.7812±4.4782 0.7001±0.1116 –0.0312±0.0639 7.5413±0.0572 0.8819±0.0101 本文算法 51.3852±6.3223 0.6679±0.0249 –0.2532±0.0251 7.9253±0.1322 0.8938±0.0285 Blenheim 文献[16]算法 35.5897±2.2001 0.8686±0.0129 0.0667±0.0165 6.5025±0.1967 0.7960±0.0258 文献[17]算法 37.5815±1.6224 0.8260±0.0366 0.4688±0.0945 7.0697±0.0903 0.7661±0.0373 文献[19]算法 26.0153±1.9259 0.9123±0.0035 0.4406±0.0231 7.0390±0.0716 0.8332±0.0209 文献[20]算法 18.2786±2.2769 0.8215±0.0262 0.2759±0.0339 6.4305±0.0602 0.7721±0.0449 文献[21]算法 64.9899±1.7827 0.6632±0.0094 0.0377±0.0135 6.2305±0.1637 0.7239±0.0108 本文算法 40.0056±0.9116 0.9764±0.0022 0.7940±0.0969 7.4379±0.0434 0.9549±0.0131 Playground 文献[16]算法 50.2886±6.4619 0.8954±0.0129 –0.0276±0.0249 5.9694±0.4580 0.9021±0.0123 文献[17]算法 31.9030±8.1211 0.7788±0.0575 0.0115±0.1177 7.4964±0.0911 0.7529±0.0703 文献[19]算法 43.6243±3.5659 0.9205±0.0086 0.1664±0.0519 7.2406±0.1060 0.8967±0.0142 文献[20]算法 35.5237±3.2426 0.7807±0.0182 –0.1450±0.0595 6.9652±0.0930 0.7728±0.0309 文献[21]算法 51.8038±5.3890 0.6917±0.0258 –0.0457±0.0417 6.8567±0.2089 0.8213±0.0204 本文算法 54.4761±10.9746 0.9546±0.0230 0.0587±0.0506 7.1156±0.1721 0.9379±0.0421 Stele 文献[16]算法 30.7638±15.7369 0.3649±0.0288 0.4263±0.1234 6.8163±0.0828 0.7349±0.0476 文献[17]算法 44.2502±3.1428 0.7392±0.0199 0.0577±0.0443 7.1132±0.0828 0.7665±0.0296 文献[19]算法 51.0145±5.4531 0.8529±0.0109 0.3319±0.0846 6.5512±0.1477 0.7671±0.0174 文献[20]算法 40.8246±4.8187 0.8214±0.0157 0.2711±0.1034 6.2814±0.1242 0.7805±0.0233 文献[21]算法 75.7723±3.8898 0.5875±0.0166 0.0227±0.0419 7.3425±0.1065 0.7881±0.0252 本文算法 29.9452±3.0779 0.9045±0.0222 0.4791±0.1163 7.9275±0.0933 0.8580±0.0361 Motocycle 文献[16]算法 35.9520±15.9557 0.6854±0.0389 –0.0101±0.0254 6.9864±0.0507 0.5594±0.0292 文献[17]算法 49.8669±5.5066 0.7500±0.0324 0.3960±0.0882 7.4345±0.0583 0.8401±0.0319 文献[19]算法 33.4659±11.3533 0.8693±0.0047 0.2797±0.0475 7.0304±0.0646 0.8535±0.0114 文献[20]算法 25.9303±7.0241 0.3705±0.0650 –0.3172±0.3156 5.7929±0.3812 0.1670±0.0547 文献[21]算法 69.1006±4.9147 0.5231±0.0146 0.0111±0.0299 7.6674±0.1062 0.7442±0.0219 本文算法 52.0758±8.0932 0.7720±0.0281 0.5653±0.0896 7.2598±0.0992 0.8955±0.0261 Ship 文献[16]算法 38.8112±11.4819 0.7648±0.1141 0.0505±0.1817 7.5924±0.1369 0.6952±0.1243 文献[17]算法 33.9529±3.1727 0.8063±0.0162 0.0147±0.0551 7.5878±0.0791 0.7969±0.0267 文献[19]算法 35.1544±10.5172 0.8396±0.0104 0.0313±0.0449 7.5395±0.0431 0.7682±0.0134 文献[20]算法 33.8128±3.7508 0.5602±0.0496 –0.3243±0.0212 6.8355±0.1586 0.3912±0.0669 文献[21]算法 53.0535±4.7626 0.6343±0.0167 –0.1062±0.0099 6.8996±0.1023 0.7783±0.0097 本文算法 46.0955±3.6169 0.8365±0.0125 0.2137±0.0863 7.8230±0.0131 0.7985±0.0206 Beach 文献[16]算法 16.2818±4.7095 0.9786±0.0096 0.7025±0.0864 7.3837±0.0457 0.9702±0.0133 文献[17]算法 38.2337±5.4335 0.7396±0.0096 –0.2957±0.0371 7.4769±0.0844 0.6582±0.0159 文献[19]算法 9.4401±2.4871 0.8823±0.0050 0.0043±0.0454 7.4627±0.0237 0.8078±0.0062 文献[20]算法 22.7816±3.3244 0.4762±0.4821 –0.3919±0.0207 6.4422±0.2008 0.2868±0.0615 文献[21]算法 32.7816±8.8543 0.7221±0.0207 0.0181±0.0082 7.4134±0.0851 0.8845±0.0031 本文算法 28.2158±5.8622 0.9802±0.0154 0.8117±0.0881 7.8108±0.0240 0.9415±0.0197 -
XU Yong, WEN Jie, FEI Lunke, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2015, 4: 165–188. doi: 10.1109/ACCESS.2015.2511558 YU Tianhe, MENG Xue, ZHU Ming, et al. An improved multi-scale retinex fog and haze image enhancement method[C]. 2016 International Conference on Information System and Artificial Intelligence, Hong Kong, China, 2016: 557–560. doi: 10.1109/ISAI.2016.0124. LI Yaning, WANG Junping, GAO Kang, et al. Fast morphological filtering haze removal method from a single image[J]. Journal of Computational Information Systems, 2015, 11(16): 5799–5806. doi: 10.12733/jcis14861 QIAO Tong, REN Jinchang, WANG Zheng, et al. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 119–133. doi: 10.1109/TGRS.2016.2598065 黄果, 许黎, 陈庆利, 等. 非局部多尺度分数阶微分图像增强算法研究[J]. 电子与信息学报, 2019, 41(12): 2972–2979. doi: 10.11999/JEIT190032HUANG Guo, XU Li, CHEN Qingli, et al. Research on non-local multi-scale fractional differential image enhancement algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2972–2979. doi: 10.11999/JEIT190032 HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168 杨爱萍, 王南, 庞彦伟, 等. 人工光源条件下夜间雾天图像建模及去雾[J]. 电子与信息学报, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704YANG Aiping, WANG Nan, PANG Yanwei, et al. Nighttime haze removal based on new imaging model with artificial light sources[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704 江巨浪, 孙伟, 王振东, 等. 基于透射率权值因子的雾天图像融合增强算法[J]. 电子与信息学报, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032JIANG Julang, SUN Wei, WANG Zhendong, et al. Integrated enhancement algorithm for hazy image using transmittance as weighting factor[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032 MA Xiao, SHAO Limin, XU Guanlei, et al. Intelligent defogging method based on clustering and dark channel prior[C]. 2018 IEEE 3rd International Conference on Image, Vision and Computing, Chongqing, China, 2018: 149–156. doi: 10.1109/ICIVC.2018.8492842. 杨燕, 王志伟. 基于均值不等关系优化的自适应图像去雾算法[J]. 电子与信息学报, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368YANG Yan and WANG Zhiwei. Adaptive image dehazing algorithm based on mean unequal relation optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368 JOHN J and WILSCY M. Enhancement of weather degraded video sequences using wavelet fusion[C]. The 7th IEEE International Conference on Cybernetic Intelligent Systems, London, England, 2008: 1–6. doi: 10.1109/UKRICIS.2008.4798926. YOON I, KIM S, KIM D, et al. Adaptive defogging with color correction in the HSV color space for consumer surveillance system[J]. IEEE Transactions on Consumer Electronics, 2012, 58(1): 111–116. doi: 10.1109/TCE.2012.6170062 郭璠, 蔡自兴, 谢斌. 基于雾气理论的视频去雾算法[J]. 电子学报, 2011, 39(9): 2019–2025.GUO Fan, CAI Zixing, and XIE Bin. Video defogging algorithm based on fog theory[J]. Acta Electronica Sinica, 2011, 39(9): 2019–2025. 刘海波, 杨杰, 吴正平, 等. 改进的基于雾气理论的视频去雾[J]. 光学精密工程, 2016, 24(7): 1789–1798. doi: 10.3788/OPE.20162407.1789LIU Haibo, YANG Jie, WU Zhengping, et al. Improved video defogging based on fog theory[J]. Optics and Precision Engineering, 2016, 24(7): 1789–1798. doi: 10.3788/OPE.20162407.1789 马忠丽, 文杰, 郝亮亮. 海面舰船场景的视频图像海雾去除算法[J]. 系统工程与电子技术, 2014, 36(9): 1860–1867. doi: 10.3969/j.issn.1001-506X.2014.09.31MA Zhongli, WEN Jie, and HAO Liangliang. Video image defogging algorithm for surface ship scenes[J]. Systems Engineering and Electronics, 2014, 36(9): 1860–1867. doi: 10.3969/j.issn.1001-506X.2014.09.31 LI Zhuwen, TAN Ping, TAN R T, et al. Simultaneous video defogging and stereo reconstruction[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 4988–4997. doi: 10.1109/CVPR.2015.7299133. BERMAN D, TREIBITZ T, AVIDAN S, et al. Non-local image dehazing[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1674–1682. doi: 10.1109/CVPR.2016.185. KATO T, SHIMIZU I, and PAJDLA T. Selecting image pairs for SfM by introducing jaccard similarity[C]. The 15th IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 2017: 25–29. doi: 10.23919/MVA.2017.7986764. CAI Bolun, XU Xiangmin, and TAO Dacheng. Real-time video dehazing based on spatio-temporal MRF[C]. The 17th Pacific-Rim Conference on Multimedia on Advances in Multimedia Information Processing, Cham, 2016: 315–325. doi: 10.1007/978-3-319-48896-7_31. ZHAO Dong, XU Long, YAN Yihua, et al. Multi-scale optimal fusion model for single image dehazing[J]. Signal Processing: Image Communication, 2019, 74: 253–265. doi: 10.1016/j.image.2019.02.004 YU Teng, SONG Kang, MIAO Pu, et al. Nighttime single image dehazing via pixel-wise alpha blending[J]. IEEE Access, 2019, 7: 114619–114630. doi: 10.1109/ACCESS.2019.2936049