高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于样本选择的RGBD图像协同显著目标检测

刘政怡 刘俊雷 赵鹏

刘政怡, 刘俊雷, 赵鹏. 基于样本选择的RGBD图像协同显著目标检测[J]. 电子与信息学报, 2020, 42(9): 2277-2284. doi: 10.11999/JEIT190393
引用本文: 刘政怡, 刘俊雷, 赵鹏. 基于样本选择的RGBD图像协同显著目标检测[J]. 电子与信息学报, 2020, 42(9): 2277-2284. doi: 10.11999/JEIT190393
Zhengyi LIU, Junlei LIU, Peng ZHAO. RGBD Image Co-saliency Object Detection Based on Sample Selection[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2277-2284. doi: 10.11999/JEIT190393
Citation: Zhengyi LIU, Junlei LIU, Peng ZHAO. RGBD Image Co-saliency Object Detection Based on Sample Selection[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2277-2284. doi: 10.11999/JEIT190393

基于样本选择的RGBD图像协同显著目标检测

doi: 10.11999/JEIT190393
基金项目: 安徽省自然科学基金(1908085MF182),国家自然科学基金(61602004)
详细信息
    作者简介:

    刘政怡:女,1978年生,副教授,研究方向为计算机视觉、深度学习

    刘俊雷:男,1995年生,硕士生,研究方向为计算机视觉

    赵鹏:女,1976年生,副教授,研究方向为智能信息处理、机器学习

    通讯作者:

    刘政怡 liuzywen@ahu.edu.cn

  • 中图分类号: TN911.73; TP391.4

RGBD Image Co-saliency Object Detection Based on Sample Selection

Funds: The Provincial Natural Science Foundation of Anhui(1908085MF182), The National Natural Science Foundation of China(61602004)
  • 摘要: 协同显著目标检测的目的是在包含两张及以上相关图像的图像组中检测共同显著的物体。该文提出一种利用机器学习的方法对协同显著目标进行检测。首先,基于4个评分指标从图像组中选择部分显著目标易于检测的简单图像,构成简单图像集;接着,基于协同一致性的原则,从简单图像集中提取正负样本,并用深度学习模型提取的高维语义特征表示正负样本;再者,利用正负样本训练的协同显著分类器对图像中的超像素进行分类,得到协同显著目标区域;最后,经过一个平滑融合的操作,得到最终的协同显著图。在公开数据集上的测试结果表明,所提算法在检测精度和检测效率上优于目前的主流算法,并具有较强的鲁棒性。
  • 图  1  本文提出的RGBD协同显著目标检测方法的框架图

    图  2  不同方法生成的协同显著图对比

    图  3  本文算法与其他算法在两个数据集上的P-R曲线对比

    图  4  本文算法两个策略在两个数据集上的P-R曲线对比

    图  5  RGBD CoSal150数据集不同参数的F-measure测量

    表  1  不同算法在两个数据集上的测试结果对比

    RGBD CoSal150RGBD CoSeg183
    S-measureF-measureMAES-measureF-measureMAE
    ESCS0.6250.5870.2180.6360.4140.156
    CBCS0.5720.5820.2150.6220.3650.116
    ICFS0.7100.7640.1790.6300.4430.163
    MCL0.7660.8100.1370.6890.4880.098
    本文方法0.8490.8810.0890.7080.5020.081
    下载: 导出CSV

    表  2  不同模块在两个数据集上的测试结果对比

    RGBD CoSal150RGBD CoSeg183
    S-measureF-measureMAES-measureF-measureMAE
    颜色+纹理特征0.8160.8170.1310.6610.4730.143
    无简单图像选择0.8320.8370.1170.7020.4770.090
    高维语义特征+简单图像选择0.8490.8810.0890.7080.5020.081
    下载: 导出CSV

    表  3  不同方法平均每副图运行时间比较(s)

    方法ESCSCBCSICFSMCL本文方法
    时间2.842.4342.6741.038.76
    下载: 导出CSV
  • WANG Wenguan, SHEN Jianbing, LI Xuelong, et al. Robust video object cosegmentation[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3137–3148. doi: 10.1109/TIP.2015.2438550
    LEI Jianjun, WU Min, ZHANG Changqing, et al. Depth-preserving stereo image retargeting based on pixel fusion[J]. IEEE Transactions on Multimedia, 2017, 19(7): 1442–1453. doi: 10.1109/TMM.2017.2660440
    LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882
    CAO Xiaochun, ZHANG Changqing, FU Huazhu, et al. Saliency-aware nonparametric foreground annotation based on weakly labeled data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1253–1265. doi: 10.1109/TNNLS.2015.2488637
    PANG Yanwei, ZHU Hailong, LI Xuelong, et al. Motion blur detection with an indicator function for surveillance machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5592–5601. doi: 10.1109/TIE.2016.2564938
    LEI Jianjun, LIU Jianying, ZHANG Hailong, et al. Motion and structure information based adaptive weighted depth video estimation[J]. IEEE Transactions on Broadcasting, 2015, 61(3): 416–424. doi: 10.1109/TBC.2015.2437197
    YANG Jingyu, GAN Ziqiao, LI Kun, et al. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 927–940. doi: 10.1109/TCYB.2014.2340032
    SONG Hangke, LIU Zhi, XIE Yufeng, et al. RGBD co-saliency detection via bagging-based clustering[J]. IEEE Signal Processing Letters, 2016, 23(12): 1722–1726. doi: 10.1109/LSP.2016.2615293
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. Co-saliency detection for RGBD images based on multi-constraint feature matching and cross label propagation[J]. IEEE Transactions on Image Processing, 2018, 27(2): 568–579. doi: 10.1109/TIP.2017.2763819
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. An iterative co-saliency framework for RGBD images[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 233–246. doi: 10.1109/tcyb.2017.2771488
    CHEN M, VELASCO-FORERO S, TSANG I, et al. Objects co-segmentation: Propagated from simpler images[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 1682–1686. doi: 10.1109/ICASSP.2015.7178257.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    GUO Jingfan, REN Tongwei, and BEI Jia. Salient object detection for RGB-D image via saliency evolution[C]. 2016 IEEE International Conference on Multimedia and Expo, Seattle, USA, 2016: 1–6.
    CONG Runmin, LEI Jianjun, ZHANG Changqing, et al. Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion[J]. IEEE Signal Processing Letters, 2016, 23(6): 819–823. doi: 10.1109/lsp.2016.2557347
    MAI Long and LIU Feng. Comparing salient object detection results without ground truth[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 76–91. doi: 10.1007/978-3-319-10578-9_6.
    LI Lina, LIU Zhi, and ZHANG Jian. Unsupervised image co-segmentation via guidance of simple images[J]. Neurocomputing, 2018, 275: 1650–1661. doi: 10.1016/j.neucom.2017.10.002
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. HSCS: Hierarchical Sparsity based co-saliency detection for RGBD images[J]. IEEE Transactions on Multimedia, 2019, 21(7): 1660–1771. doi: 10.1109/TMM.2018.2884481
    ARTHUR D and VASSILVITSKII S. k-means++: The advantages of careful seeding[C]. The Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
    HUANG Posheng, SHEN C H, and HSIAO H F. RGBD salient object detection using spatially coherent deep learning framework[C]. The 23rd IEEE International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5.
    LIU Zhengyi, SHI Song, DUAN Quntao, et al. Salient object detection for RGB-D image by single stream recurrent convolution neural network[J]. Neurocomputing, 2019, 363: 46–57. doi: 10.1016/j.neucom.2019.07.012
    HAN Junwei, CHENG Gong, LI Zhenpeng, et al. A unified metric learning-based framework for co-saliency detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2473–2483. doi: 10.1109/tcsvt.2017.2706264
    QIN Yao, FENG Mengyang, LU Huchuan, et al. Hierarchical cellular automata for visual saliency[J]. International Journal of Computer Vision, 2018, 126(7): 751–770. doi: 10.1007/s11263-017-1062-2
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722. doi: 10.1109/TIP.2015.2487833
    WANG Wenguan, SHEN Jianbing, and SHAO Ling. Consistent video saliency using local gradient flow optimization and global refinement[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4185–4196. doi: 10.1109/TIP.2015.2460013
    FAN Dengping, CHENG Mingming, LIU Yun, et al. Structure-measure: A new way to evaluate foreground maps[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4558–4567.
    LI Yijun, FU Keren, LIU Zhi, et al. Efficient saliency-model-guided visual co-saliency detection[J]. IEEE Signal Processing Letters, 2015, 22(5): 588–592. doi: 10.1109/LSP.2014.2364896
    FU Huazhu, CAO Xiaochun, and TU Zhuowen. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3766–3778. doi: 10.1109/TIP.2013.2260166
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1963
  • HTML全文浏览量:  790
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2020-03-01
  • 网络出版日期:  2020-06-27
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回