高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非局部操作的深度卷积神经网络车位占用检测算法

申铉京 沈哲 黄永平 王玉

申铉京, 沈哲, 黄永平, 王玉. 基于非局部操作的深度卷积神经网络车位占用检测算法[J]. 电子与信息学报, 2020, 42(9): 2269-2276. doi: 10.11999/JEIT190349
引用本文: 申铉京, 沈哲, 黄永平, 王玉. 基于非局部操作的深度卷积神经网络车位占用检测算法[J]. 电子与信息学报, 2020, 42(9): 2269-2276. doi: 10.11999/JEIT190349
Xuanjing SHEN, Zhe SHEN, Yongping HUANG, Yu WANG. Deep Convolutional Neural Network for Parking Space Occupancy Detection Based on Non-local Operation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2269-2276. doi: 10.11999/JEIT190349
Citation: Xuanjing SHEN, Zhe SHEN, Yongping HUANG, Yu WANG. Deep Convolutional Neural Network for Parking Space Occupancy Detection Based on Non-local Operation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2269-2276. doi: 10.11999/JEIT190349

基于非局部操作的深度卷积神经网络车位占用检测算法

doi: 10.11999/JEIT190349
基金项目: 智慧法院智能化服务技术研究及支撑平台开发(2018YFC0830100),国家自然科学基金(61672259, 61876070),国家自然科学基金青年科学基金(61602203),吉林省科技发展计划重点科技研发项目(20180201064SF),吉林省优秀青年人才基金(20180520020JH)
详细信息
    作者简介:

    申铉京:男,1958年生,博士,教授,研究方向为图像处理与模式识别、多媒体信息安全、智能控制技术

    沈哲:男,1995年生,硕士生,研究方向为图像处理与模式识别

    黄永平:男,1964年生,博士,副教授,研究方向为图像处理与模式识别、智能控制与嵌入式系统

    王玉:男,1983年生,博士,副教授,研究方向为图像处理与模式识别、多媒体信息技术

    通讯作者:

    王玉 wangyu001@jlu.edu.cn

  • 中图分类号: TN911.73; TP391

Deep Convolutional Neural Network for Parking Space Occupancy Detection Based on Non-local Operation

Funds: The Intelligent Court Intelligent Service Technology Research and Support Platform Development (2018YFC0830100), The National Natural Science Foundation of China (61672259, 61876070), The National Natural Science Foundation of China Youth Science Foundation (61602203), The Key Scientific and Technological R & D Projects of Jilin Province Science and Technology Development Plan(20180201064SF), Jilin Province Outstanding Young Talent Fund Project (20180520020JH)
  • 摘要: 随着城市交通智能化发展,准确高效地获取可用车位对于解决日益严峻的停车难问题至关重要。该文提出一种基于非局部操作的深度卷积神经网络车位占用检测算法。针对停车位图像特性,引入非局部操作,度量远距离像素间的相似性,直接获取边缘高频特征;使用小卷积核获取局部细节特征;以端到端的方式训练网络。实验中,通过设置不同卷积核尺寸和非局部模块层数,优化网络结构。实验结果表明,该文所提算法与传统的基于纹理特征的车位占用检测算法相比,无论在预测精度还是模型的泛化性能,均具有显著的优势。与当前广泛应用的基于局部特征提取的卷积神经网络相比,该算法具有较大的优势。在真实场景中,该算法同样具有较高精度,具备实际应用价值。
  • 图  1  非局部模块

    图  2  停车位图像

    图  3  模型结构图

    图  4  不同卷积核尺寸的准确率曲线图

    图  5  不同层数非局部模块的准确率曲线图

    图  6  可视化的特征图

    图  7  PKLot, CNRPark数据集间实验准确率对比柱状图

    图  8  匡亚明楼停车场车位占用情况检测结果

    表  1  不同卷积核尺寸的准确率详细对比(%)

    卷积核尺寸训练精度测试精度
    UFPR04UFPR05PUCPR
    399.9799.7496.4097.48
    599.9099.7897.6797.85
    799.5699.7296.0096.78
    999.4499.4194.8196.38
    1199.4199.2592.1895.39
    下载: 导出CSV

    表  2  不同层数非局部模块的准确率详细对比(%)

    非局部模块层数训练精度测试精度
    UFPR04UFPR05PUCPR
    199.9099.7897.6797.85
    299.9699.8197.6597.55
    399.9599.8598.5598.35
    下载: 导出CSV

    表  3  不同方法的PKLot子数据集内测试准确率(%)

    训练集UFPR04UFPR05PUCPR
    测试集UFPR04UFPR05PUCPR
    本文方法99.8599.6299.92
    mAlexnet99.5499.4999.90
    LPQu99.5098.9099.58
    Mean99.6499.3099.61
    下载: 导出CSV

    表  4  不同方法的PKLot子数据集间测试准确率(%)

    训练集测试集方法精度
    UFPR04UFPR05本文方法98.55
    mAlexnet[14]93.29
    LPQg[18]84.92
    Max88.33
    PUCPR本文方法98.31
    mAlexnet[14]98.27
    LPQg[18]84.25
    Mean88.40
    UFPR05UFPR04本文方法94.45
    mAlexnet[14]93.69
    LPQg[18]85.76
    Mean85.53
    PUCPR本文方法95.87
    mAlexnet[14]92.72
    LPQu[17]87.74
    Mean89.83
    PUCPRUFPR04本文方法99.24
    mAlexnet[14]98.03
    LPQg[18]87.15
    Mean88.88
    UFPR05本文方法98.89
    mAlexnet[14]96.00
    LBPri[19]82.78
    Mean84.20
    下载: 导出CSV
  • CAICEDO F, BLAZQUEZ C, and MIRANDA P. Prediction of parking space availability in real time[J]. Expert Systems with Applications, 2012, 39(8): 7281–7290. doi: 10.1016/j.eswa.2012.01.091
    DEL POSTIGO C G, TORRES J, and MENÉNDEZ J M. Vacant parking area estimation through background subtraction and transience map analysis[J]. IET Intelligent Transport Systems, 2015, 9(9): 835–841. doi: 10.1049/iet-its.2014.0090
    DAN N. Parking management system and method[P]. US, 20030144890, 2003.
    TSAI L W, HSIEH J W, and FAN K C. Vehicle detection using normalized color and edge map[J]. IEEE Transactions on Image Processing, 2007, 16(3): 850–864. doi: 10.1109/tip.2007.891147
    HUANG C C, TAI Yushu, and WANG S J. Vacant parking space detection based on plane-based Bayesian hierarchical framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1598–1610. doi: 10.1109/tcsvt.2013.2254961
    DELIBALTOV D, WU Wencheng, LOCE R P, et al. Parking lot occupancy determination from lamp-post camera images[C]. The 16th International IEEE Conference on Intelligent Transportation Systems, The Hague, Netherlands, 2013: 2387–2392. doi: 10.1109/itsc.2013.6728584.
    LECUN Y, BENGIO Y, and HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    DE ALMEID P R L, OLIVEIRA L S, BRITTO JR A S, et al. PKLot–a robust dataset for parking lot classification[J]. Expert Systems with Applications, 2015, 42(11): 4937–4949. doi: 10.1016/j.eswa.2015.02.009
    AMATO G, CARRARA F, FALCHI F, et al. Car parking occupancy detection using smart camera networks and deep learning[C]. 2016 IEEE Symposium on Computers and Communication, Messina, Italy, 2016: 1212–1217. doi: 10.1109/iscc.2016.7543901.
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/cvpr.2005.38.
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5998–6008.
    WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803. doi: 10.1109/cvpr.2018.00813.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/cvpr.2016.90.
    AMATO G, CARRARA F, FALCHI F, et al. Deep learning for decentralized parking lot occupancy detection[J]. Expert Systems with Applications, 2017, 72: 327–334. doi: 10.1016/j.eswa.2016.10.055
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Red Hook, USA, 2012: 1097–1105.
    NURULLAYEV S and LEE S W. Generalized parking occupancy analysis based on dilated convolutional neural network[J]. Sensors, 2019, 19(2): 277. doi: 10.3390/s19020277
    OJANSIVU V and HEIKKILÄ J. Blur insensitive texture classification using local phase quantization[C]. The 3rd International Conference on Image and Signal Processing, Cherbourg-Octeville, France, 2008: 236–243. doi: 10.1007/978-3-540-69905-7_27.
    RAHTU E, HEIKKILA J, OJANSIVU V, et al. Local phase quantization for blur-insensitive image analysis[J]. Image and Vision Computing, 2012, 30(8): 501–512. doi: 10.1016/j.imavis.2012.04.001
    OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987. doi: 10.1109/tpami.2002.1017623
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1990
  • HTML全文浏览量:  783
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2020-01-04
  • 网络出版日期:  2020-07-01
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回