高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态参数差分进化算法的多约束稀布矩形面阵优化

姚敏立 王旭健 张峰干 戴定成

姚敏立, 王旭健, 张峰干, 戴定成. 基于动态参数差分进化算法的多约束稀布矩形面阵优化[J]. 电子与信息学报, 2020, 42(5): 1281-1287. doi: 10.11999/JEIT190346
引用本文: 姚敏立, 王旭健, 张峰干, 戴定成. 基于动态参数差分进化算法的多约束稀布矩形面阵优化[J]. 电子与信息学报, 2020, 42(5): 1281-1287. doi: 10.11999/JEIT190346
Minli YAO, Xujian WANG, Fenggan ZHANG, Dingcheng DAI. Synthesis of Sparse Rectangular Planar Arrays with Multiple Constraints Based on Dynamic Parameters Differential Evolution Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1281-1287. doi: 10.11999/JEIT190346
Citation: Minli YAO, Xujian WANG, Fenggan ZHANG, Dingcheng DAI. Synthesis of Sparse Rectangular Planar Arrays with Multiple Constraints Based on Dynamic Parameters Differential Evolution Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1281-1287. doi: 10.11999/JEIT190346

基于动态参数差分进化算法的多约束稀布矩形面阵优化

doi: 10.11999/JEIT190346
详细信息
    作者简介:

    姚敏立:男,1966年生,教授,研究方向为宽带移动卫星通信、阵列信号处理

    王旭健:男,1994年生,硕士生,研究方向为阵列天线优化设计

    张峰干:男,1985年生,博士,研究方向为阵列信号处理、阵列天线优化

    戴定成:男,1991年生,博士生,研究方向为阵列天线优化设计

    通讯作者:

    王旭健 wxj_903@163.com

  • 中图分类号: TN820

Synthesis of Sparse Rectangular Planar Arrays with Multiple Constraints Based on Dynamic Parameters Differential Evolution Algorithm

  • 摘要:

    针对多约束条件下稀布矩形平面阵列天线的优化问题,该文提出一种基于动态参数差分进化(DPDE)算法的方向图综合方法。首先,对差分进化(DE)算法中的缩放因子和交叉概率引入动态变化控制策略,提高搜索效率和搜索精度。其次,改进矩阵映射方法,重新定义映射法则,改善现有方法随机性强和搜索精度低的不足。最后,为检验所提方法的有效性进行仿真实验,实验数据表明,该方法可以提高天线优化性能,有效降低天线的峰值旁瓣电平。

  • 图  1  矩形面阵结构示意图

    图  2  $\varphi = {0^{\rm{^\circ }}}$$\varphi = {90^{\rm{^\circ }}}$平面的方向图

    图  3  实验1的PSLL实验结果

    图  4  全平面远场方向图

    图  5  实验2的PSLL实验结果

    图  6  实验1阵元分布

    图  7  实验2阵元分布

    表  1  标准测试函数

    函数变量取值范围最小值
    f1$\displaystyle\sum\limits_{i = 1}^n {x_i^2} $[–100, 100]0
    f2$\displaystyle\sum\limits_{i = 1}^n {\left| {{x_i}} \right|} + \prod\limits_{i = 1}^n {{x_i}} $[–10, 10]0
    f3${\displaystyle\sum\limits_{i = 1}^n {\left( {\displaystyle\sum\limits_{j = 1}^i {{x_j}} } \right)} ^2}$[–100, 100]0
    f4$\displaystyle\sum\limits_{i = 1}^D {{{\left( {\left| {{x_i} + 0.5} \right|} \right)}^2}\quad } $[–100, 100]0
    f5$\displaystyle\sum\limits_{i = 1}^D {\left[ {x_i^2 - 10\cos \left( {2\pi {x_i}} \right) + 10} \right]} $[–5.12,5.12]0
    f6$ - 20{ {\rm{e} }^{ - 0.2\sqrt {\dfrac{1}{D}\displaystyle\sum\limits_{i = 1}^D {x_i^2} } } } - { {\rm{e} }^{\dfrac{1}{D}\displaystyle\sum\limits_{i = 1}^D {\cos \left( {2\pi {x_i} } \right)} } } + 20 + {\rm{e} }$[–32, 32]0
    f7$\dfrac{1}{ {400} }\displaystyle\sum\limits_{i = 1}^D {x_i^2} - \prod\limits_{i = 1}^D {\cos \left( {\frac{ { {x_i} } }{ {\sqrt i } } } \right)} + 1$[–600, 600]0
    下载: 导出CSV

    表  2  实验参数设置

    缩放因子交叉概率Cr种群规模NP迭代次数NI变量维度D缩放因子F变异概率Mr
    DPDE$1/\sqrt t $自适应5010000100/2000.50.5
    DE(无)0.5
    下载: 导出CSV

    表  3  DPDE和DE的实验结果对比(较好的以*标出)

    DPDE (D=100)DE (D=100)DPDE (D=200)DE (D=200)
    MEANSDPSR(%)MEANSDPSR(%)MEANSDPSR(%)MEANSDPSR(%)
    f12.72E-28*5.23E-561001.86E-145.94E-291005.16E-17*6.17E-341001.87E+017.91E+000
    f21.87E-14*5.83E-291007.97E-092.65E-1801.01E-08*9.34E-1804.73E+003.23E-010
    f31.41E+00*3.61E-0203.39E+055.07E+0809.04E+00*1.32E+0001.33E+061.02E+100
    f49.25E-28*9.62E-551001.99E-146.35E-291001.97E-16*1.01E-321001.92E+011.12E+010
    f53.72E+01*1.77E+0207.67E+023.69E+0202.11E+02*2.14E+0302.04E+038.78E+020
    f61.54E-14*3.52E-301002.80E-083.13E-1701.68E-09*2.27E-1902.05E+009.44E-010
    f78.66E-17*2.16E-331001.08E-141.55E-291002.33E-16*1.64E-331002.74E+001.12E-010
    下载: 导出CSV

    表  4  仿真实验结果对比(dB)

    实验方法最优值均值最差值方差
    实验1本文方法–62.093–60.395–58.1410.898
    MGA–45.456–43.864
    MMM–51.499–49.269
    AMM–61.454–58.922
    实验2本文方法–22.753–21.287–19.0380.363
    MGA–18.840
    MMM–20.384
    AMM–21.886–20.456
    下载: 导出CSV
  • OLIVERI G and MASSA A. Genetic algorithm (GA)-enhanced almost difference set (ADS)-based approach for array thinning[J]. IET Microwaves, Antennas & Propagation, 2011, 5(3): 305–315. doi: 10.1049/iet-map.2010.0114
    CHEN Kesong, CHEN Hui, WANG Ling, et al. Modified real GA for the synthesis of sparse planar circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 274–277. doi: 10.1109/LAWP.2015.2440432
    BHATTACHARYA R, BHATTACHARYYA T K, and GARG R. Position mutated hierarchical particle swarm optimization and its application in synthesis of unequally spaced antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3174–3181. doi: 10.1109/tap.2012.2196917
    DAI Dingcheng, YAO Minli, MA Hongguang, et al. An effective approach for the synthesis of uniformly excited large linear sparse array[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 377–380. doi: 10.1109/LAWP.2018.2790907
    BAI Yanying, XIAO Shaoqiu, LIU Changrong, et al. A hybrid IWO/PSO algorithm for pattern synthesis of conformal phased arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2328–2332. doi: 10.1109/tap.2012.2231936
    SUN Geng, LIU Yanheng, CHEN Zhaoyu, et al. Radiation beam pattern synthesis of concentric circular antenna arrays using hybrid approach based on cuckoo search[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4563–4576. doi: 10.1109/TAP.2018.2846771
    ZHANG Bo, LIU Wei, and GOU Xiaoming. Compressive sensing based sparse antenna array design for directional modulation[J]. IET Microwaves, Antennas & Propagation, 2017, 11(5): 634–641. doi: 10.1049/iet-map.2016.0313
    YAN Chuang, YANG Peng, XING Zhiyu, et al. Synthesis of planar sparse arrays with minimum spacing constraint[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6): 1095–1098. doi: 10.1109/LAWP.2018.2833962
    GU Pengfei, WANG Gui, FAN Zhenhong, et al. Efficient unitary matrix pencil method for synthesising wideband frequency patterns of sparse linear arrays[J]. IET Microwaves, Antennas & Propagation, 2018, 12(12): 1871–1876. doi: 10.1049/iet-map.2018.0148
    LIN Zhiqiang, JIA Weimin, YAO Minli, et al. Synthesis of sparse linear arrays using vector mapping and simultaneous perturbation stochastic approximation[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 220–223. doi: 10.1109/LAWP.2012.2188266
    贾维敏, 林志强, 姚敏立, 等. 一种多约束稀布线阵的天线综合方法[J]. 电子学报, 2013, 41(5): 926–930. doi: 10.3969/j.issn.0372-2112.2013.05.015

    JIA Weimin, LIN Zhiqiang, YAO Minli, et al. A synthesis technique for linear sparse arrays with multiple constraints[J]. Acta Electronica Sinica, 2013, 41(5): 926–930. doi: 10.3969/j.issn.0372-2112.2013.05.015
    于波, 陈客松, 朱盼, 等. 稀布圆阵的降维优化方法[J]. 电子与信息学报, 2014, 36(2): 476–481. doi: 10.3724/SP.J.1146.2013.00526

    YU Bo, CHEN Kesong, ZHU Pan, et al. An optimum method of sparse concentric rings array based on dimensionality reduction[J]. Journal of Electronics &Information Technology, 2014, 36(2): 476–481. doi: 10.3724/SP.J.1146.2013.00526
    CHEN Kesong, YUN Xiaohua, HE Zishu, et al. Synthesis of sparse planar arrays using modified real genetic algorithm[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(4): 1067–1073. doi: 10.1109/tap.2007.893375
    LIU Heng, ZHAO Hongwei, LI Weimei, et al. Synthesis of sparse planar arrays using matrix mapping and differential evolution[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1905–1908. doi: 10.1109/LAWP.2016.2542882
    DAI Dingcheng, YAO Minli, MA Hongguang, et al. An asymmetric mapping method for the synthesis of sparse planar arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 70–73. doi: 10.1109/LAWP.2017.2774498
    LI Xiangtao, WANG Jianan, and YIN Minghao. Enhancing the performance of cuckoo search algorithm using orthogonal learning method[J]. Neural Computing and Applications, 2014, 24(6): 1233–1247. doi: 10.1007/s00521-013-1354-6
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2858
  • HTML全文浏览量:  1186
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 修回日期:  2019-09-06
  • 网络出版日期:  2020-01-31
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回