高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群算法的LCLC谐振变换器优化设计

赵斌 王刚 宋婧妍 刘雅琳

赵斌, 王刚, 宋婧妍, 刘雅琳. 基于粒子群算法的LCLC谐振变换器优化设计[J]. 电子与信息学报, 2021, 43(6): 1622-1629. doi: 10.11999/JEIT190337
引用本文: 赵斌, 王刚, 宋婧妍, 刘雅琳. 基于粒子群算法的LCLC谐振变换器优化设计[J]. 电子与信息学报, 2021, 43(6): 1622-1629. doi: 10.11999/JEIT190337
Bin ZHAO, Gang WANG, Jingyan SONG, Yalin LIU. Optimal Design Method of the LCLC Resonant Converter Based on Particle-Swarm-Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1622-1629. doi: 10.11999/JEIT190337
Citation: Bin ZHAO, Gang WANG, Jingyan SONG, Yalin LIU. Optimal Design Method of the LCLC Resonant Converter Based on Particle-Swarm-Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1622-1629. doi: 10.11999/JEIT190337

基于粒子群算法的LCLC谐振变换器优化设计

doi: 10.11999/JEIT190337
详细信息
    作者简介:

    赵斌:男,1988年生,研究员,研究方向为高压、高频变换器以及高频磁性元器件

    王刚:男,1971年生,研究员,研究方向为高压电源技术

    宋婧妍:女,1995年生,硕士生,研究方向为高压电源技术以及数字环路控制

    刘雅琳:女,1993年生,助理研究员,研究方向为高压电源技术

    通讯作者:

    王刚 wanggang@mail.ie.ac.cn

  • 中图分类号: TN124, TN86

Optimal Design Method of the LCLC Resonant Converter Based on Particle-Swarm-Optimization Algorithm

  • 摘要: LCLC谐振变换器广泛应用在空间行波管放大器(TWTA)中,起到升压的作用。在LCLC谐振变换器中,具有多个谐振参数,即变压器漏感、串联谐振电容、励磁电感以及并联谐振电容。多个谐振参数增加了LCLC谐振变换器总损耗优化的难度。该文提出一种基于粒子群优化算法的LCLC谐振变换器优化设计方法,解决LCLC谐振变换器由于多个谐振参数造成的总损耗优化困难的问题。首先,推导了LCLC谐振变换器的总损耗公式;其次,采用粒子群优化算法,对LCLC谐振变换器的总损耗进行了优化,得到了总损耗最小时的谐振变换器参数;最后,基于优化的LCLC谐振变换器参数,搭建了LCLC谐振变换器,并进行了一系列实验。实验结果证明了该优化设计方法的有效性。
  • 图  1  电子功率调节器的两级结构

    图  2  基于粒子群优化算法的LCLC谐振变换器优化设计

    图  3  用于LCLC谐振变换器优化设计的粒子群优化设计算法

    图  4  总损耗随迭代次数的变化

    图  5  改进的用于高压平面变压器的部分交错绕组结构

    图  6  优化的LCLC谐振变换器的实验波形

    图  7  改变励磁电感时的测试波形

    图  8  改变励磁电容时的测试波形

    图  9  效率测试

    表  1  LCLC谐振变换器参数

    参数名称参数值参数名称参数值
    Vin40 VVe10200 mm3
    Vout4800 VAe190 mm2
    fs300 kHzkc3.716×10–24
    Ro80 kΩα4.823
    Vgs10 Vβ5.521
    Qg40 nCRon4.5 mΩ
    Coss660 pFRac20.0 mΩ
    下载: 导出CSV

    表  2  高压平面变压器参数

    参数名称描述参数值
    dps变压器原边和副边之间的距离0.13 mm
    dpt初级绕组厚度0.2 mm
    dst次级绕组厚度70 µm
    da气隙厚度63 µm
    dpw初级绕组宽度9.6 mm
    dsw次级绕组宽度0.28 mm
    dti加厚绝缘层厚度1.6 mm
    dni常规绝缘层厚度0.3 mm
    下载: 导出CSV

    表  3  仿真结果与优化结果的对比

    参数名称仿真结果优化设计结果
    Lr0.09 µH0.09 µH
    Lm8.1 µH8.0 µH
    Cp13.0 nF13.2 nF
    下载: 导出CSV
  • [1] NICOL E F and ROBISON J M. TWTA on-orbit reliability for satellite industry[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2366–2370. doi: 10.1109/TED.2018.2802868
    [2] ZHAO Bin, ZHANG Xin, and ZHANG Zhe. Sequential Offline-Online-Offline (SO3) measurement approach for high-frequency LCLC resonant converters in the TWTA applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1568–1579. doi: 10.1109/TIE.2019.2898601
    [3] 赵斌, 王刚, 王东蕾, 等. 空间行波管用LCLC谐振变换器的研究[J]. 电子与信息学报, 2017, 39(2): 482–488. doi: 10.11999/JEIT160334

    ZHAO Bin, WANG Gang, WANG Donglei, et al. Application of LCLC resonant converters for space travelling-wave tube amplifiers[J]. Journal of Electronics &Information Technology, 2017, 39(2): 482–488. doi: 10.11999/JEIT160334
    [4] 赵斌, 王刚, 王东蕾. LCLC谐振变换器谐振电流的研究[J]. 电子与信息学报, 2017, 39(6): 1479–1486. doi: 10.11999/JEIT160752

    ZHAO Bin, WANG Gang, and WANG Donglei. Research on the resonant current of the LCLC resonant converters[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1479–1486. doi: 10.11999/JEIT160752
    [5] WANG Jianmin, TZENG L, HSU M T, et al. A simple control scheme to avoid the sensing noise for the DC–DC buck converter with synchronous rectifier[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 5086–5091. doi: 10.1109/TIE.2017.2772195
    [6] LU Weiguo, CHEN Weiming, RUAN Yixiao, et al. An auxiliary-parallel-inductor-based sequence switching control to improve the load transient response of buck converters[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2776–2784. doi: 10.1109/TIE.2018.2844847
    [7] VEERACHARY M. Analysis of minimum-phase fourth-order buck DC–DC converter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 144–154. doi: 10.1109/TIE.2015.2472525
    [8] KHAN A A and CHA H. Dual-buck-structured high-reliability and high-efficiency single-stage buck–boost inverters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3176–3187. doi: 10.1109/TIE.2017.2752145
    [9] DE LEÓN-ALDACO S E, CALLEJA H, and ALQUICIRA J A. Metaheuristic optimization methods applied to power converters: A review[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6791–6803. doi: 10.1109/TPEL.2015.2397311
    [10] ZHAO Bin, ZHANG Xin, and HUANG Jingjing. AI algorithm-based two-stage optimal design methodology of high-efficiency CLLC resonant converters for the hybrid AC-DC microgrid applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9756–9767. doi: 10.1109/TIE.2019.2896235
    [11] HEBALA O M, ABOUSHADY A A, AHMED K H, et al. Generic closed-loop controller for power regulation in dual active bridge DC–DC converter with current stress minimization[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4468–4478. doi: 10.1109/TIE.2018.2860535
    [12] LEE J H, SONG J, KIM D W, et al. Particle swarm optimization algorithm with intelligent particle number control for optimal design of electric machines[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1791–1798. doi: 10.1109/TIE.2017.2760838
    [13] BANERJEE S, GHOSH A, and RANA N. An improved interleaved boost converter with PSO-based optimal type-III controller[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 323–337. doi: 10.1109/JESTPE.2016.2608504
    [14] ZHAO Bin, WANG Gang, and HURLEY G. Analysis and performance of LCLC resonant converters for high-voltage high-frequency applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(3): 1272–1286. doi: 10.1109/JESTPE.2017.2687398
    [15] ZHAO Bin, OUYANG Ziwei, DUFFY M C, et al. Andersen. An improved partially interleaved transformer structure for high-voltage high-frequency multiple-output applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2691–2702. doi: 10.1109/TIE.2018.2840499.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  218
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-15
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回