高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于感兴趣区域的高性能视频编码帧内预测优化算法

宋人杰 张元东

宋人杰, 张元东. 基于感兴趣区域的高性能视频编码帧内预测优化算法[J]. 电子与信息学报, 2020, 42(11): 2781-2787. doi: 10.11999/JEIT190330
引用本文: 宋人杰, 张元东. 基于感兴趣区域的高性能视频编码帧内预测优化算法[J]. 电子与信息学报, 2020, 42(11): 2781-2787. doi: 10.11999/JEIT190330
Renjie SONG, Yuandong ZHANG. High Efficiency Video Coding Intra Prediction Optimization Algorithm Based on Region of Interest[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2781-2787. doi: 10.11999/JEIT190330
Citation: Renjie SONG, Yuandong ZHANG. High Efficiency Video Coding Intra Prediction Optimization Algorithm Based on Region of Interest[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2781-2787. doi: 10.11999/JEIT190330

基于感兴趣区域的高性能视频编码帧内预测优化算法

doi: 10.11999/JEIT190330
详细信息
    作者简介:

    宋人杰:女,1966年生,教授,研究方向为数字图像处理与可视化应用、计算机视觉与电力应用

    张元东:男,1993年生,硕士生,研究方向为感兴趣区域HEVC算法

    通讯作者:

    张元东 1406632033@qq.com

  • 中图分类号: TN919.81

High Efficiency Video Coding Intra Prediction Optimization Algorithm Based on Region of Interest

  • 摘要: 针对高性能视频编码(HEVC)帧内预测编码算法复杂度较高的问题,该文提出一种基于感兴趣区域的高性能视频编码帧内预测优化算法。首先,根据图像显著性划分当前帧的感兴趣区域(ROI)和非感兴趣区域(NROI);然后,对ROI基于空域相关性采用提出的快速编码单元(CU)划分算法决定当前编码单元的最终划分深度,跳过不必要的CU划分过程;最后,基于ROI采用提出的预测单元(PU)模式快速选择算法计算当前PU的能量和方向,根据能量和方向确定当前PU的预测模式,减少率失真代价的相关计算,达到降低编码复杂度和节省编码时间的目的。实验结果表明,在峰值信噪比(PSNR)损失仅为0.0390 dB的情况下,所提算法可以平均降低47.37%的编码时间。
  • 图  1  本文算法与文献[8]、文献[9]算法的检测结果

    图  2  本文算法和HM13.0算法的RD性能比较

    表  1  快速CU划分算法正确率和PU预测模式快速选择算法命中率(%)

    序列QP=22QP=27QP=32QP=37平均
    Traffic93.7/91.495.6/92.396.1/95.696.8/96.195.6/93.9
    BQTerrace93.1/89.794.8/91.495.8/93.596.4/94.795.0/92.3
    Partyscene92.4/90.294.7/93.195.6/93.996.2/94.894.7/93.0
    Blowing Bubbles91.1/88.693.4/90.394.7/92.595.8/93.793.8/91.3
    Johnny92.3/89.894.6/92.795.3/94.596.1/95.394.6/93.1
    平均92.5/89.994.6/91.995.5/94.096.3/94.994.7/92.7
    下载: 导出CSV

    表  2  本文算法与文献[3]算法及文献[6]算法实验结果对比

    分辨率序列BDBR(%)BDPSNR(dB)$T$(%)
    $2560 \times 1600$Traffic0.7054/0.6874/0.6013–0.0406/–0.0396/–0.032742.19/43.62/46.89
    PeopleOnStreet1.2017/1.1047/0.7161–0.0593/–0.0617/–0.041043.94/45.05/50.14
    $1920 \times 1080$Kimono0.6725/0.6435/0.6314–0.0351/–0.0309/–0.029342.76/43.93/47.93
    Basketball Drive1.3316/1.2704/1.0341–0.0296/–0.0311/–0.027443.35/44.86/48.19
    Cactus1.2073/1.3160/0.9758–0.0314/–0.0348/–0.031741.87/45.16/48.34
    $832 \times 480$BQMall1.1986/1.1476/0.7692–0.0724/–0.0769/–0.040540.01/42.93/45.54
    Basketball Drill1.3843/1.2543/0.6963–0.0716/–0.0683/–0.031739.16/43.47/46.74
    RaceHorsesC1.2196/1.1702/0.7163–0.0631/–0.0574/–0.038540.54/43.24/45.83
    $416 \times 240$Keiba1.4055/1.1394/0.5631–0.0965/–0.0846/–0.041741.96/43.56/46.14
    BQSquare1.3423/1.2761/0.6176–0.0913/–0.0877/–0.047541.64/44.87/46.86
    BasketballPass1.4063/1.4322/0.7568–0.0714/–0.0793/–0.051343.45/44.14/47.43
    $1280 \times 720$FourPeople0.9704/0.9417/0.6975–0.0542/–0.0523/–0.037242.64/43.17/47.39
    Vidy010.6725/0.6524/0.7351–0.0403/–0.0443/–0.046241.47/41.83/46.87
    Vidyo31.0457/0.9125/0.8143–0.0562/–0.0549/–0.049642.09/42.54/46.13
    平均1.1260/1.0677/0.7375–0.0581/–0.0574/–0.039041.93/43.74/47.17
    下载: 导出CSV

    表  3  本文算法与文献[13]算法实验结果对比

    Class文献[13]算法本文算法
    BDBR(%)BDPSNR(dB)$T$(%)BDBR(%)BDPSNR(dB)$T$(%)
    ClassA0.9236–0.074244.190.6697–0.039248.62
    ClassB1.1747–0.055745.770.8926–0.032748.74
    ClassC1.3532–0.082341.890.7369–0.035445.86
    ClassD1.3479–0.102243.940.6461–0.047346.69
    ClassE1.0754–0.083743.760.7493–0.044146.93
    平均1.1750–0.079643.910.7389–0.039747.37
    下载: 导出CSV
  • 王莉, 曹一凡, 杜高明, 等. 一种低延迟的3维高效视频编码中深度建模模式编码器[J]. 电子与信息学报, 2019, 41(7): 1625–1632. doi: 10.11999/JEIT180798

    WANG Li, CAO Yifan, DU Gaoming, et al. A Low-latency depth modelling mode-1 encoder in 3d-high efficiency video coding standard[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1625–1632. doi: 10.11999/JEIT180798
    TAI Kuanghan, HSIEH M Y, CHEN Meijuan, et al. A fast HEVC encoding method using depth information of collocated CUs and RD Cost characteristics of PU modes[J]. IEEE Transactions on Broadcasting, 2017, 63(4): 680–692. doi: 10.1109/TBC.2017.2722239
    LI Yue, YANG Gaobo, ZHU Yapei, et al. Unimodal stopping model -based early SKIP mode decision for high -efficiency video coding[J]. IEEE Transactions on Multimedia, 2017, 19(7): 1431–1441. doi: 10.1109/TMM.2017.2669863
    TAI Kuanghan, CHEN Meijuan, LIN Jieru, et al. Acceleration for HEVC encoder by bimodal segmentation of Rate-Distortion cost and accurate determination of early termination and early split[J]. IEEE Access, 2019, 7: 45259–45273. doi: 10.1109/ACCESS.2019.2900517
    HUANG Chao, PENG Zongju, CHEN Fen, et al. Efficient CU and PU decision based on neural network and gray level co-occurrence matrix for intra prediction of screen content coding[J]. IEEE Access, 2018, 6: 46643–46655. doi: 10.1109/ACCESS.2018.2866081
    CHEN Meijuan, WU Yude, YEH C H, et al. Efficient CU and PU decision based on motion information for interprediction of HEVC[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4735–4745. doi: 10.1109/TII.2018.2801852
    LIU Xingang, LIU Yinbo, WANG Peicheng, et al. An adaptive mode decision algorithm based on video texture characteristics for HEVC intra prediction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1737–1748. doi: 10.1109/TCSVT.2016.2556278
    WANG Xinzhi, FANG Yifan, LI Changdi, et al. Static gesture segmentation technique based on improved Sobel operator[J]. The Journal of Engineering, 2019, 2019(22): 8339–8342. doi: 10.1049/joe.2019.1075
    GONG Shenjian, LI Guangqiang, ZHANG Yongju, et al. Application of static gesture segmentation based on an improved canny operator[J]. The Journal of Engineering, 2019, 2019(15): 543–546. doi: 10.1049/joe.2018.9377
    余映, 吴青龙, 邵凯旋, 等. 超复数域小波变换的显著性检测[J]. 电子与信息学报, 2019, 41(9): 2231–2238. doi: 10.11999/JEIT180738

    YU Ying, WU Qinglong, SHAO Kaixuan, et al. Saliency detection of wavelet transform in hypercomplexdomain[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2231–2238. doi: 10.11999/JEIT180738
    ZHANG Tao, SUN Mingting, ZHAO Debin, et al. Fast intra-mode and CU size decision for HEVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1714–1726. doi: 10.1109/TCSVT.2016.2556518
    PAN Zhaoqing, LEI Jianjun, ZHANG Yun, et al. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder[J]. IEEE Transactions on Broadcasting, 2016, 62(3): 675–684. doi: 10.1109/TBC.2016.2580920
    GU Jiawen, TANG Minhao, WEN Jiangtao, et al. Adaptive intra candidate selection with early depth decision for fast intra prediction in HEVC[J]. IEEE Signal Processing Letters, 2018, 25(2): 159–163. doi: 10.1109/LSP.2017.2766766
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  2034
  • HTML全文浏览量:  875
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2020-05-24
  • 网络出版日期:  2020-07-01
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回