高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阵列天线和稀疏贝叶斯学习的室内定位方法

刘坤 吴建新 甄杰 王彤

刘坤, 吴建新, 甄杰, 王彤. 基于阵列天线和稀疏贝叶斯学习的室内定位方法[J]. 电子与信息学报, 2020, 42(5): 1158-1164. doi: 10.11999/JEIT190314
引用本文: 刘坤, 吴建新, 甄杰, 王彤. 基于阵列天线和稀疏贝叶斯学习的室内定位方法[J]. 电子与信息学报, 2020, 42(5): 1158-1164. doi: 10.11999/JEIT190314
Kun LIU, Jianxin WU, Jie ZHEN, Tong WANG. Indoor Localization Algorithm Based on Array Antenna and Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1158-1164. doi: 10.11999/JEIT190314
Citation: Kun LIU, Jianxin WU, Jie ZHEN, Tong WANG. Indoor Localization Algorithm Based on Array Antenna and Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1158-1164. doi: 10.11999/JEIT190314

基于阵列天线和稀疏贝叶斯学习的室内定位方法

doi: 10.11999/JEIT190314
基金项目: 国家重点研发计划课题(2016YFB0502201)
详细信息
    作者简介:

    刘坤:男,1995年生,博士生,研究方向为阵列信号处理、雷达信号处理

    吴建新:男,1982年生,副教授,研究方向为阵列信号处理,雷达信号处理等

    甄杰:女,1969年生,研究员,研究方向为室内外一体化定位与导航

    王彤:男,1974年生,教授,研究方向为阵列信号处理、空时信号处理、自适应信号处理

    通讯作者:

    吴建新 jxwu@mail.xidian.edu.cn

  • 中图分类号: TN911.7; TN926.1

Indoor Localization Algorithm Based on Array Antenna and Sparse Bayesian Learning

Funds: The National Key Research and Development Plan (2016YFB0502201)
  • 摘要:

    由于多径和非同源等因素的影响,传统基于蓝牙信号强度的室内定位方法的性能精度和稳定性都不高。针对基于蓝牙信号的复杂室内环境定位问题,该文提出基于低成本阵列天线的室内定位方法,该方法利用单通道轮采极化敏感阵列天线对蓝牙信号进行采样,然后结合暗室测量获得的准确阵列流形和极化快收敛稀疏贝叶斯学习(P-FCSBL)算法实现信源的角度估计,最后通过角度实现定位。该方法充分利用极化信息和角度信息来实现目标和多径信号的分离,同时对单信源的同时采样保证了估计的稳定性。最后通过实测数据处理验证了该方法的有效性。

  • 图  1  蓝牙阵列模型图

    图  2  插值后水平极化阵列流形及垂直极化阵列流形幅度图

    图  3  信号模型图

    图  4  阵元个数不同时定位轨迹图

    图  5  信源轨迹追踪图

    图  6  距离均方根误差图

     初始化:
      $ {\left( {{\sigma ^2}} \right)^{\left( 1 \right)}}{\rm{ = }}{\widehat \sigma ^2}$
      $ {{{v}}_i} = {{{S}}_i}{{{h}}_i},i = 1,2, ··· ,P$
      $ {{D}} = \left[ {{{{v}}_1}\;{{{v}}_2}\; ··· \;{{{v}}_P}} \right]$
      $ \gamma _i^{\left( 1 \right)} = \left| {{{v}}_i^{\rm{H}}{{x}}} \right|/\left| {{{v}}_i^{\rm{H}}{{{v}}_i}} \right|,i = 1,2, ··· ,P$
      $ {{{C}}^{\left( 1 \right)}} = \displaystyle\sum\limits_{i{\rm{ = }}1}^P {\gamma _i^{\left( 1 \right)}{{v}}_i^{\rm{H}}{{{v}}_i} + {{\left( {{\sigma ^2}} \right)}^{\left( 1 \right)}}{{I}}} $
     迭代:
      $ {\mu ^{\left( j \right)}} = {{{\varGamma}} ^{\left( j \right)}}{{{D}}^{\rm{H}}}{\left( {{{{M}}^{\left( j \right)}}} \right)^{ - 1}}{{x}}$
      $ {\left( {{\sigma ^2}} \right)^{\left( {j + 1} \right)}} = \left( {1/N} \right)\left[ {\left\| {{{x}} - {{D}}{{{\mu}} ^{\left( j \right)}}} \right\|_2^2 + {{\left( {{\sigma ^2}} \right)}^{\left( j \right)}}\displaystyle\sum\limits_1^P {\gamma _i^{\left( j \right)}{{v}}_i^{\rm{H}}{{\left( {{{{C}}^{\left( j \right)}}} \right)}^{ - 1}}{{{v}}_i}} } \right]$
      $ \gamma _i^{\left( {j + 1} \right)} = {\left| {\gamma _i^{\left( j \right)}{{v}}_i^{\rm{H}}{{\left( {{{{C}}^{\left( j \right)}}} \right)}^{ - 1}}{{x}}} \right|^2},i = 1,2, ··· ,P$
      $ {{{C}}^{\left( {j + 1} \right)}} = \displaystyle\sum\limits_{i{\rm{ = }}1}^P {\gamma _i^{\left( {j + 1} \right)}{{v}}_i^{\rm{H}}{{{v}}_i} + {{\left( {{\sigma ^2}} \right)}^{\left( {j + 1} \right)}}{{I}}} $
     直到得到一个满足要求的稀疏解。
    下载: 导出CSV

    表  1  两次实验定位误差分析统计表

    实验平均定位误差(m)误差≤0.2 m的占比(%)误差≤0.4 m的占比(%))误差≤1 m的占比(%)
    轨迹1 RSS1.085803.4836.32
    轨迹2 RSS1.019603.9840.80
    轨迹1 FCSBL0.124787.16100100
    轨迹2 FCSBL0.184358.2998.10100
    轨迹1 P-FCSBL0.093090.79100100
    轨迹2 P-FCSBL0.099093.23100100
    下载: 导出CSV
  • WANG Bang, CHEN Qiuyun, YANG L T, et al. Indoor smartphone localization via fingerprint crowdsourcing: Challenges and approaches[J]. IEEE Wireless Communications, 2016, 23(3): 82–89. doi: 10.1109/MWC.2016.7498078
    陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10): 1316–1326. doi: 10.11947/j.AGCS.2017.20170383

    CHEN Ruizhi and CHEN Liang. Indoor positioning with smartphones: The state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1316–1326. doi: 10.11947/j.AGCS.2017.20170383
    周牧, 刘仪瑶, 杨小龙, 等. 基于Wi-Fi即时定位与映射像素模板匹配的室内运动地图构建与定位[J]. 电子与信息学报, 2018, 40(5): 1050–1058. doi: 10.11999/JEIT170781

    ZHOU Mu, LIU Yiyao, YANG Xiaolong, et al. Indoor mobility map construction and localization based on Wi-Fi simultaneous localization and mapping pixel template matching[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1050–1058. doi: 10.11999/JEIT170781
    李方敏, 张韬, 刘凯, 等. 基于距离测量和位置指纹的室内定位方法研究[J]. 计算机学报, 2019, 42(2): 339–350. doi: 10.11897/SP.J.1016.2019.00339

    LI Fangmin, ZHANG Tao, LIU Kai, et al. An indoor positioning method based on range measuring and location fingerprinting[J]. Chinese Journal of Computers, 2019, 42(2): 339–350. doi: 10.11897/SP.J.1016.2019.00339
    SADOWSKI S and SPACHOS P. RSSI-based indoor localization with the internet of things[J]. IEEE Access, 2018, 6: 30149–30161. doi: 10.1109/ACCESS.2018.2843325
    ZHANG Meiyan and CAI Wenyu. Multivariate polynomial interpolation based indoor fingerprinting localization using Bluetooth[J]. IEEE Sensors Letters, 2018, 2(4): 7001704. doi: 10.1109/LSENS.2018.2878558
    GU Yu and REN Fuji. Energy-efficient indoor localization of smart hand-held devices using Bluetooth[J]. IEEE Access, 2015, 3: 1450–1461. doi: 10.1109/ACCESS.2015.2441694
    LOVÓN-MELGAREJO J, CASTILLO-CARA M, HUARCAYA-CANAL O, et al. Comparative study of supervised learning and metaheuristic algorithms for the development of Bluetooth-based indoor localization mechanisms[J]. IEEE Access, 2019, 7: 26123–26135. doi: 10.1109/ACCESS.2019.2899736
    SUBEDI S, GANG H S, KO N Y, et al. Improving indoor fingerprinting positioning with affinity propagation clustering and weighted centroid fingerprint[J]. IEEE Access, 2019, 7: 31738–31750. doi: 10.1109/ACCESS.2019.2902564
    XIAO Chao, YANG Daiqin, CHEN Zhenzhong, et al. 3-D BLE indoor localization based on denoising autoencoder[J]. IEEE Access, 2017, 5: 12751–12760. doi: 10.1109/ACCESS.2017.2720164
    SUN Wei, XUE Min, YU Hongshan, et al. Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10896–10905. doi: 10.1109/TVT.2018.2870160
    田增山, 王阳, 周牧, 等. 基于自适应渐消记忆的蓝牙序列匹配定位算法[J]. 电子与信息学报, 2019, 41(6): 1381–1388. doi: 10.11999/JEIT18063

    TIAN Zengshan, WANG Yang, ZHOU Mu, et al. Adaptive fading memory based Bluetooth sequence matching localization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1381–1388. doi: 10.11999/JEIT18063
    GUO Xiansheng, LI Lin, ANSARI N, et al. Accurate WiFi localization by fusing a group of fingerprints via a global fusion profile[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7314–7325. doi: 10.1109/TVT.2018.2833029
    YU Ning, ZHAN Xiaohong, ZHAO Shengnan, et al. A precise dead reckoning algorithm based on Bluetooth and multiple sensors[J]. IEEE Internet of Things Journal, 2018, 5(1): 336–351. doi: 10.1109/JIOT.2017.2784386
    陈显舟, 陈周, 杨旭, 等. 阵列单通道轮采式快速高精度定位算法[J]. 现代雷达, 2017, 39(8): 49–53. doi: 10.16592/j.cnki.1004-7859.2017.08.011

    CHEN Xianzhou, CHEN Zhou, YANG Xu, et al. Fast high-resolution passive localization algorithm based on single-channel using switch-antenna array[J]. Modern Radar, 2017, 39(8): 49–53. doi: 10.16592/j.cnki.1004-7859.2017.08.011
    WANG Zetao, XIE Wenchong, DUAN Keqing, et al. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar[J]. Signal Processing, 2017, 130: 159–168. doi: 10.1016/j.sigpro.2016.06.023
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2660
  • HTML全文浏览量:  974
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-09-28
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回