高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车联网中一种基于软件定义网络与移动边缘计算的卸载策略

张海波 荆昆仑 刘开健 贺晓帆

张海波, 荆昆仑, 刘开健, 贺晓帆. 车联网中一种基于软件定义网络与移动边缘计算的卸载策略[J]. 电子与信息学报, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304
引用本文: 张海波, 荆昆仑, 刘开健, 贺晓帆. 车联网中一种基于软件定义网络与移动边缘计算的卸载策略[J]. 电子与信息学报, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304
Haibo ZHANG, Kunlun JING, Kaijian LIU, Xiaofan HE. An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304
Citation: Haibo ZHANG, Kunlun JING, Kaijian LIU, Xiaofan HE. An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304

车联网中一种基于软件定义网络与移动边缘计算的卸载策略

doi: 10.11999/JEIT190304
基金项目: 国家自然科学基金(61801065, 61601071),长江学者和创新团队发展计划基金(IRT16R72),重庆市基础与前沿项目(cstc2018jcyjAX0463)
详细信息
    作者简介:

    张海波:男,1979年生,副教授,研究方向为无线资源管理

    荆昆仑:男,1995年生,硕士生,研究方向为移动边缘计算

    刘开健:女,1981年生,讲师,研究方向为最优化算法

    贺晓帆:男,1985年生,助理教授,研究方向为无线资源优化

    通讯作者:

    刘开健 liukj@cqupt.edu.cn

  • 中图分类号: TN929.5

An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks

Funds: The National Natural Science Foundation of China (61801065, 61601071), The Program for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The General Project on Foundation and Cutting-edge Research Plan of Chongqing (cstc2018jcyjAX0463)
  • 摘要:

    在新兴的车联网络中,汽车终端请求卸载的任务对网络带宽、卸载时延等有着更加严苛的需求,而新型通信网络研究中移动边缘计算(MEC)的提出更好地解决了这一挑战。该文着重解决的是汽车终端进行任务卸载时卸载对象的匹配问题。文中引入了软件定义车载网络(SDN-V)对全局变量统一调度,实现了资源控制管理、设备信息采集以及任务信息分析。基于用户任务的差异化性质,定义了重要度的模型,在此基础上,通过设计任务卸载优先级机制算法,实现任务优先级划分。针对多目标优化模型,采用乘子法对非凸优化模型进行求解。仿真结果表明,与其他卸载策略相比,该文所提卸载机制对时延和能耗优化效果明显,能够最大程度地保证用户的效益。

  • 图  1  系统模型图

    图  2  数据大小与能耗关系图

    图  3  任务所需周期与能耗关系图

    图  4  数据大小与时延关系图

    图  5  任务所需周期与时延关系图

    图  6  数据大小与总开销关系图

    图  7  任务所需周期数与总开销关系图

    表  1  任务卸载优先级机制

     (1) 输入:车辆$i$的请求信息为$\{ {C_i},{S_i},t_{{Q_i}}^{\max }\} $,定义$\zeta $的取值,$i \in \{ 1\; 2\; ··· \; n\} $, ${\rm{Im}}{{\rm{p}}_{\rm{i}}}{\rm{ = \{ im}}{{\rm{p}}_{\rm{1}}}{\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_{\rm{2}}}\; ···\; {\rm{im}}{{\rm{p}}_{{n}}}\; {\rm{\} }}$
     (2) 输出:降序排列的重要度${\rm{im}}{{\rm{p}}_i}$
     (3) for $i = 1;i < n;i + + $
     (4) 将${C_i},t_{{Q_i}}^{\max }$代入式(9)求出${\rm{im}}{{\rm{p}}_i}$
     (5) ${\rm{Im}}{{\rm{p}}_{\rm{i}}}={\rm{\{ im}}{{\rm{p}}_{\rm{1}}}{\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_{\rm{2}}}{\kern 1pt} {\kern 1pt} ···\; {\rm{im}}{{\rm{p}}_{{i}}}{\rm{\} }}$
     (6) for $i = 1:n$ do
     (7) if ${{{\rm Imp}(i) < {\rm Imp}(i + 1)}}$; ${{\rm temp} = {\rm Imp}(i + 1)}$; ${{{\rm Imp}(i + 1) = {\rm Imp}(i)}}{\kern 1pt} {\kern 1pt} {\kern 1pt} ;{{{\rm Imp}(i) = {\rm temp}}}$
     (8) end
    下载: 导出CSV

    表  2  基于Q-学习的任务卸载策略机制

     (1) 输入:车辆$i$的请求信息$\{ {Q_i},{T_i}\} $, ${\tau _{\rm{1}}},{\tau _2},({\rm{0 < }}{\tau _{\rm{1}}} < {\tau _{\rm{2}}})$, $i \in \{ 1\; 2\; ··· \; n\} $, ${\rm{Im}}{{\rm{p}}_{{i}}}{\rm{ = \{ im}}{{\rm{p}}_{\rm{1}}}{\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_{\rm{2}}}\; ···\; {\rm{im}}{{\rm{p}}_{{i}}}{\rm{\} }}$
     (2) 输出:${x_i}$, ${\psi _i}$
     (3) if ${\rm{im}}{{\rm{p}}_i} < {\tau _{\rm{1}}}$:${x_i}=0$;${\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_i} > {\tau _2}$:${x_i}{\rm{ = 1}}$
     (4) elif ${\tau _{\rm{1}}} < {\rm{im}}{{\rm{p}}_i} < {\tau _{\rm{2}}}$:初始化$g$, ${x_{ij}} = 1$, $\varsigma $, $p$, $\hat Q\left( {{a_i}} \right) = 0,\; {\kern 1pt} t = 0$最大收敛时间${t_{c - \max }}$
     (5) while ${\kern 1pt} t < {t_{c - \max }} + 1$:按照时延约束对车辆用户排序
     (6) for $i = 1:N\; {\kern 1pt} {\kern 1pt} $ do
     (7) 根据贪婪方法选择行为${a_i}$、根据式(15)求出用户奖励
     (8) 更新$\hat { Q}$数值矩阵通过${\hat Q_{t + 1}}\left( {s,a} \right) \leftarrow \left( {1 - \varsigma } \right){\hat Q_t}\left( {s,a} \right) + \varsigma \left( {g + \eta \mathop {\max }\limits_{a'} {{\hat Q}_t}\left( {s',a'} \right)} \right)$, $p \leftarrow \left( {p/\sqrt t } \right)$
     (9) end for;$t = t + 1$;end while
     (10) 利用${\psi _i}$更新目标优化式(7)
     (11) end
    下载: 导出CSV

    表  3  模拟参数表

    参数 数值
    计算任务${Q_i}$ 1~50 MB
    传输带宽$W$ 100 MHz
    汽车用户发射功率${p_i}$ 0.2 W
    任务所需CPU周期数${C_i}$ 0.1~1 GHz
    MEC服务器CPU周期频率${f_{\rm b}}$ 6 GHz
    车辆用户的CPU周期频率${f_v}$ 0.5~1 GHz
    高斯噪声${\sigma ^2}$ –100 dBm
    信道传输距离${d_{mn}}$ 5~500 m
    汽车CPU能耗功率系数${p_{{v} } }$ 80 W/GHz
    电池最大容量 20 kWh
    下载: 导出CSV
  • 程刚, 郭达. 车联网现状与发展研究[J]. 移动通信, 2011, 35(17): 23–26. doi: 10.3969/j.issn.1006-1010.2011.17.004

    CHENG Gang, and GUO Da. Research on the status and development of internet of vehicles[J]. Mobile Communications, 2011, 35(17): 23–26. doi: 10.3969/j.issn.1006-1010.2011.17.004
    齐彦丽, 周一青, 刘玲, 等. 融合移动边缘计算的未来5G移动通信网络[J]. 计算机研究与发展, 2018, 55(3): 478–486. doi: 10.7544/issn1000-1239.2018.20170801

    QI Yanli, ZHOU Yiqing, LIU Ling, et al. MEC coordinated future 5G mobile wireless networks[J]. Journal of Computer Research and Development, 2018, 55(3): 478–486. doi: 10.7544/issn1000-1239.2018.20170801
    LI Yong, JIN Depeng, HUI Pan, et al. Optimal base station scheduling for device-to-device communication underlaying cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 34(1): 27–40. doi: 10.1109/JSAC.2015.2452415
    AMEMIYA K, AKIYAMA Y, KOBAYASHI K, et al. On-site evaluation of a software cellular based MEC system with downlink slicing technology[C]. The 7th IEEE International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–7. doi: 10.1109/CloudNet.2018.8549380.
    WANG Hansong, LI Xi, JI Hong, et al. Dynamic offloading scheduling scheme for MEC-enabled vehicular networks[C]. 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 206–210. doi: 10.1109/ICCChinaW.2018.8674508.
    YU Rong, DING Jiefei, HUANG Xumin, et al. Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7844–7856. doi: 10.1109/tvt.2016.2536441
    鲍楠, 左加阔, 胡晗, 等. 基于SDN的网络资源选择多目标优化算法[J]. 通信学报, 2019, 40(2): 51–59. doi: 10.11959/j.issn.1000?436x.2019031

    BAO Nan, ZUO Jiakuo, HU Han, et al. SDN based network resource selection multi-objective optimization algorithm[J]. Journal on Communications, 2019, 40(2): 51–59. doi: 10.11959/j.issn.1000?436x.2019031
    CHEN Min and HAO Yixue. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587–597. doi: 10.1109/JSAC.2018.2815360
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997360.
    HU Bo, CHEN Jianye, and LI fengcun. Dynamic service allocation algorithm in mobile edge computing[C]. 2017 International Conference on Information and Communication Technology Convergence, Jeju, South Korea, 2017: 104–109. doi: 10.1109/ICTC.2017.8190951.
    LI Baozhu, ZHAO Xuhui, HAN Shiyuan, et al. New SDN-based architecture for integrated vehicular cloud computing networking[C]. 2018 International Conference on Selected Topics in Mobile and Wireless Networking, Tangier, Morocco, 2018: 1–4. doi: 10.1109/MoWNet.2018.8428935.
    HUANG Xumin, YU Rong, KANG Jiawen, et al. Distributed reputation management for secure and efficient vehicular edge computing and networks[J]. IEEE Access, 2017, 5: 25408–25420. doi: 10.1109/ACCESS.2017.2769878
    TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
    JAIN R and PAUL S. Network virtualization and software defined networking for cloud computing: A survey[J]. IEEE Communications Magazine, 2013, 51(11): 24–31. doi: 10.1109/MCOM.2013.6658648
    WILHELMI F, BELLALTA B, CANO C, et al. Implications of decentralized Q-learning resource allocation in wireless networks[C]. The 28th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–5. doi: 10.1109/PIMRC.2017.8292321.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  4101
  • HTML全文浏览量:  2100
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-09-05
  • 网络出版日期:  2019-09-18
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回