高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小蜂窝网络中不活跃用户的最优能量效率资源分配方案

黄晓舸 樊伟伟 曹春燕 陈前斌

黄晓舸, 樊伟伟, 曹春燕, 陈前斌. 小蜂窝网络中不活跃用户的最优能量效率资源分配方案[J]. 电子与信息学报, 2020, 42(3): 637-644. doi: 10.11999/JEIT190303
引用本文: 黄晓舸, 樊伟伟, 曹春燕, 陈前斌. 小蜂窝网络中不活跃用户的最优能量效率资源分配方案[J]. 电子与信息学报, 2020, 42(3): 637-644. doi: 10.11999/JEIT190303
Xiaoge HUANG, Weiwei FAN, Chunyan CAO, Qianbin CHEN. Energy Efficient Resource Allocation Scheme Based on Inactive Users in Small Cell Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 637-644. doi: 10.11999/JEIT190303
Citation: Xiaoge HUANG, Weiwei FAN, Chunyan CAO, Qianbin CHEN. Energy Efficient Resource Allocation Scheme Based on Inactive Users in Small Cell Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 637-644. doi: 10.11999/JEIT190303

小蜂窝网络中不活跃用户的最优能量效率资源分配方案

doi: 10.11999/JEIT190303
基金项目: 国家自然科学基金(61831002),重庆市科委重庆市基础研究与前沿探索项目(cstc2018jcyjAx0383)
详细信息
    作者简介:

    黄晓舸:女,1982年生,副教授,研究方向为移动通信技术、认知无线电动态频谱分配

    樊伟伟:男,1996年生,硕士生,研究方向为移动通信技术、雾计算卸载方案

    曹春燕:女,1992年生,硕士生,研究方向为移动通信技术、LTE-U和Wi-Fi共存方案等

    陈前斌:男,1967年生,教授,博士生导师,研究方向为新一代移动通信网络、未来网络、LTE-Advanced异构小蜂窝网络

    通讯作者:

    黄晓舸 huangxg@cqupt.edu.cn

  • 中图分类号: TN92

Energy Efficient Resource Allocation Scheme Based on Inactive Users in Small Cell Networks

Funds: The National Natural Science Foundation of China (61831002), The Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry (cstc2018jcyjAx0383)
  • 摘要:

    针对5G网络中因小区重叠覆盖区域的干扰问题,为缓解密集小蜂窝网络中移动用户的业务连续性,提高频谱资源利用率,进而最大化整个网络平均能量效率问题。该文提出一种基于不活跃用户的最优能量效率资源分配方案(EEI)。首先,该方案依据不活跃用户通知区域,建立以用户为中心的虚拟小区,小区内小蜂窝基站可协作为用户提供通信服务,提高用户通信质量,缓解小蜂窝同层干扰,减少切换信令开销。其次,基于Lyapunov优化理论,该方案将整体网络平均能量效率优化问题,转换为用户最优传输资源分配和最优功率分配两个子问题,在最大化系统平均能量效率同时保证系统队列稳定性。由于该文将原优化问题进行了松弛,所得结果是局部最优解,而不是全局最优解。仿真结果表明,该文提出的基于不活跃用户的最优能量效率资源分配算法,其系统能量效率优于对比算法而计算复杂度较高。

  • 图  1  以用户为中心的虚拟小区5G网络场景

    图  2  不同方案的系统能效与资源块数的关系

    图  3  不同方案的系统能效与用户数的关系

    图  4  不同方案的系统能效与基站数的关系

    图  5  系统中用户和基站匹配关系图

    图  6  系统中基站和资源块匹配关系图

    图  7  系统平均队列长度与时间的关系

     算法1:最优传输资源分配算法(OTRA)
     1. 初始化${G_k}$, ${R_m}$,令$k = \left\{ {1,2,···,K} \right\}$, $N = \left\{ {1,2,···,N} \right\}$, $s = \left\{ {1,2,···,M} \right\}$, $i = K$。
     2. 每个用户分配一个RB,为用户构造一个3维信道增益矩阵${{H}}'\left( {K,N,M} \right)$
     (1).遍历信道增益矩阵${{H}}$,找到最大值${h_{k,n,m}}$, ${G_k} = {G_k} + \left\{ m \right\}$, ${R_m} = {R_m} + \left\{ n \right\}$,更新$k = k - \left\{ k \right\}$, $N = N - \left\{ n \right\}$;
     (2).删除${{H}}\left( {k,N,M} \right)$, ${{H}}\left( {:,n,:} \right)$,更新$i = i - 1$,返回(1);
     (3).直到${\left| N \right|_{\rm re}} = N - K$, ${\left| S \right|_{\rm re}} = M - x\,$ $(1 \le x \le M)$, $i = 0$。
     3. 分配RB给剩余的gNB,基于步骤1,构造一个新的3维信道增益矩阵${{H}}'\left( {K,N - K,M - x} \right)$
     (1).遍历矩阵${{H}}'$,找到最大值$h{'_{k',n',m'}}$, ${G_{k'}} = {G_{k'}} + \left\{ {m'} \right\}$, ${R_{m'}} = {R_{m'}} + \left\{ {n'} \right\}$,更新${N_{\rm re}} = {N_{re}} - \left\{ {n'} \right\}$, ${S_{\rm re}} = {S_{\rm re}} - \left\{ {m'} \right\}$;
     (2).删除${{H}}'\left( {:,n',:} \right)$, ${{H}}'\left( {:,:,m'} \right)$,更新${\left| S \right|_{\rm re}} = M - x - 1$,返回(1);
     (3). 直到${\left| N \right|_{\rm re}} = N - K - M + x$, ${\left| S \right|_{\rm re}} = 0$。
     4. 分配剩余的RB给用户,构造3维信道增益矩阵${H''}\left( {K,N - K - M + x,M} \right)$
     (1).遍历矩阵${H''}$,找到最大值${h''_{k'',n'',m''}}$, ${R_{m''}} = {R_{m''}} + \left\{ {n''} \right\}$,更新${N_{{\rm{re}}}} = {N_{{\rm{re}}}} - \left\{ {n''} \right\}$;
     (2).删除${H''}\left( {:,n''',:} \right)$,更新${\left| N \right|_{{\rm{re}}}} = N - K - M + x - 1$;
     (3).直到${\left| N \right|_{{\rm{re}}}} = 0$。
     5. 算法结束
    下载: 导出CSV
  • ALLAL I, MONGAZON-CAZAVET B, AL AGHA K, et al. A green small cells deployment in 5G — switch ON/OFF via IoT networks & energy efficient mesh backhauling[C]. 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 2017: 1–2.
    LAGEN S, AGUSTIN A, VIDAL J, et al. Distributed user-centric clustering and precoding design for CoMP joint transmission[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417090.
    ZARIFI K, BALIGH H, MA Jianglei, et al. Radio access virtualization: Cell follows user[C]. The 25th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communication, Washington, USA, 2014: 1381–1385. doi: 10.1109/PIMRC.2014.7136384.
    HUAWEI and HISILICON. Tdoc R2–1712576 RAN-based notification area configuration[S]. Reno, Nevada, USA: 3GPP, 2017.
    MENG Na, ZHANG Hongtao, and LU Haitao. Virtual cell-based mobility enhancement and performance evaluation in ultra-dense networks[C]. 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6. doi: 10.1109/WCNC.2016.7564915.
    DA SILVA I L, MILDH G, SÄILY M, et al. A novel state model for 5G Radio Access Networks[C]. 2016 IEEE International Conference on Communications Workshops, Kuala Lumpur, Malaysia, 2016: 632–637. doi: 10.1109/ICCW.2016.7503858.
    CATT. Tdoc R2–1710287 RAN-based notification area configuration[S]. Prague, Czech Republic: 3GPP, 2017.
    BAGAA M, TALEB T, and KSENTINI A. Efficient tracking area management in carrier cloud[C]. Procee2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417110.
    BAGAA M, TALEB T, and KSENTINI A. Efficient tracking area management framework for 5G networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4117–4131. doi: 10.1109/TWC.2016.2535217
    RAO J B and FAPOJUWO A O. An analytical framework for evaluating spectrum/energy efficiency of heterogeneous cellular networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3568–3584. doi: 10.1109/TVT.2015.2448593
    WANG Feng, CHEN Wen, TANG Hongying, et al. Joint optimization of user association, subchannel allocation, and power allocation in multi-cell multi-association OFDMA heterogeneous networks[J]. IEEE Transactions on Communications, 2017, 65(6): 2672–2684. doi: 10.1109/TCOMM.2017.2678986
    LI Yuzhou, SHI Yan, SHENG Min, et al. Energy-efficient transmission in heterogeneous wireless networks: A delay-aware approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7488–7500. doi: 10.1109/TVT.2015.2472578
    BOYD S, VANDENBERGHE L, and FAYBUSOVICH L. Convex optimization[J]. IEEE Transactions on Automatic Control, 2006, 51(11): 1859. doi: 10.1109/TAC.2006.884922
    PALOMAR D P and CHIANG M. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439–1451. doi: 10.1109/JSAC.2006.879350
    LI Yuzhou, SHENG Min, ZHANG Yan, et al. Energy-efficient antenna selection and power allocation in downlink distributed antenna systems: A stochastic optimization approach[C]. 2014 IEEE International Conference on Communications, Sydney, Australia, 2014: 4963–4968. doi: 10.1109/ICC.2014.6884107.
    HE Chunlong, LI G Y, ZHENG Fuchun, et al. Energy-efficient resource allocation in OFDM systems with distributed antennas[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1223–1231. doi: 10.1109/TVT.2013.2282373
    XU Guozhen, LIU An, JIANG Wei, et al. Joint user scheduling and antenna selection in distributed massive MIMO systems with limited backhaul capacity[J]. China Communications, 2014, 11(5): 17–30. doi: 10.1109/CC.2014.6880457
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2055
  • HTML全文浏览量:  746
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-10-25
  • 网络出版日期:  2019-11-07
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回