高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

社会属性感知的边缘计算任务调度策略

王汝言 聂轩 吴大鹏 李红霞

王汝言, 聂轩, 吴大鹏, 李红霞. 社会属性感知的边缘计算任务调度策略[J]. 电子与信息学报, 2020, 42(1): 271-278. doi: 10.11999/JEIT190301
引用本文: 王汝言, 聂轩, 吴大鹏, 李红霞. 社会属性感知的边缘计算任务调度策略[J]. 电子与信息学报, 2020, 42(1): 271-278. doi: 10.11999/JEIT190301
Ruyan WANG, Xuan NIE, Dapeng WU, Hongxia LI. Social Attribute Aware Task Scheduling Strategy in Edge Computing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 271-278. doi: 10.11999/JEIT190301
Citation: Ruyan WANG, Xuan NIE, Dapeng WU, Hongxia LI. Social Attribute Aware Task Scheduling Strategy in Edge Computing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 271-278. doi: 10.11999/JEIT190301

社会属性感知的边缘计算任务调度策略

doi: 10.11999/JEIT190301
基金项目: 国家自然科学基金(61771082, 61871062),重庆市高校创新团队建设计划(CXTDX201601020)
详细信息
    作者简介:

    王汝言:男,1969年生,教授,博士,研究方向为泛在网络、多媒体信息处理等

    聂轩:男,1995年生,硕士生,研究方向为移动边缘计算

    吴大鹏:男,1979年生,教授,博士,研究方向为泛在无线网络、无线网络服务质量控制等

    李红霞:女,1969年生,高级工程师,研究方向为光无线融合网络

    通讯作者:

    吴大鹏 wudp@cqupt.edu.cn

  • 中图分类号: TP393

Social Attribute Aware Task Scheduling Strategy in Edge Computing

Funds: The National Natural Science Foundation of China (61771082, 61871062), Chongqing Funded Project of Chongqing University Innovation Team Construction (CXTDX201601020)
  • 摘要:

    边缘计算服务器的负载不均衡将严重影响服务能力,该文提出一种适用于边缘计算场景的任务调度策略(RQ-AIP)。首先,根据服务器的负载分布情况衡量整个网络的负载均衡度,结合强化学习方法为任务匹配合适的边缘服务器,以满足传感器节点任务的资源差异化需求;进而,构造任务时延和终端发射功率的映射关系来满足物理域的约束,结合终端用户社会属性,为任务不断地选择合适的中继终端,通过终端辅助调度的方式实现网络的负载均衡。仿真结果表明,所提出的策略与其他负载均衡策略相比能有效地缓解边缘服务器之间的负载和核心网的流量,降低任务处理时延。

  • 图  1  系统框架图

    图  2  网络模型图

    图  3  不同场景下的负载均衡度

    图  4  不同服务器计算资源下的负载均衡度

    图  5  不同任务数量下的负载均衡度

    图  6  不同终端数目下的平均完成时延

    图  7  用户不同发送功率下的任务投递率

    表  1  仿真参数设置

    参数设定参数数值
    任务到达率(个/s)[0, 4]
    任务所需内存(GB)[1, 10]
    任务所需CPU周期(MHz)50
    任务时延(s)[200, 1500]
    边缘服务器CPU频率(GHz)3
    无线信道带宽(MHz)5
    边缘服务器数量(个)5
    学习因子0.5
    终端发射功率(W)[0.1, 2]
    噪声功率(dBm/Hz)–170
    下载: 导出CSV
  • KUMAR K, LIU Jibang, LU Y H, et al. A survey of computation offloading for mobile systems[J]. Mobile Networks and Applications, 2013, 18(1): 129–140. doi: 10.1007/s11036-012-0368-0
    ZENG Deze, GU Lin, GUO Song, et al. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system[J]. IEEE Transactions on Computers, 2016, 65(12): 3702–3712. doi: 10.1109/TC.2016.2536019
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    CHEN Xu, JIAO Lei, LI Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2795–2808. doi: 10.1109/TNET.2015.2487344
    MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318
    SAHNI Y, CAO Jiannong, and LEI Yang. Data-aware task allocation for achieving low latency in collaborative edge computing[J]. IEEE Internet of Things Journal, 2019, 6(2): 3512–3524. doi: 10.1109/JIOT.2018.2886757
    LI Tianze, WU Muqing, ZHAO Min, et al. An overhead-optimizing task scheduling strategy for ad-hoc based mobile edge computing[J]. IEEE Access, 2017, 5: 5609–5622. doi: 10.1109/ACCESS.2017.2678102
    SCHÄFER D, EDINGER J, ECKRICH J, et al. Hybrid task scheduling for mobile devices in edge and cloud environments[C]. 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, Athens, Greece, 2018: 669–674. doi: 10.1109/PERCOMW.2018.8480201.
    THAM C K and CHATTOPADHYAY R. A load balancing scheme for sensing and analytics on a mobile edge computing network[C]. The 18th IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks, Macau, China, 2017: 1–9. doi: 10.1109/WoWMoM.2017.7974307.
    CHEN Lixing, ZHOU Sheng, and XU Jie. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(4): 1619–1632. doi: 10.1109/TNET.2018.2841758
    YOUNES H, BOUATTANE O, YOUSSFI M, et al. New load balancing framework based on mobile AGENT and ant-colony optimization technique[C]. 2017 Intelligent Systems and Computer Vision, Fez, Morocco, 2017: 1–6.
    MASOOD A, MUNIR E U, RAFIQUE M M, et al. HETS: Heterogeneous edge and task scheduling algorithm for heterogeneous computing systems[C]. The 17th IEEE International Conference on High Performance Computing and Communications, New York, USA, 2015: 1865–1870. doi: 10.1109/HPCC-CSS-ICESS.2015.295.
    TIAN Rui, JIAO Zhenzhen, BIAN Guiyun, et al. A social-based data forwarding mechanism for V2V communication in VANETs[C]. The 10th International Conference on Communications and Networking in China, Shanghai, China, 2015: 595–599. doi: 10.1109/CHINACOM.2015.7498007.
    Cisco visual networking index: Global mobile data traffic forecast update, 2015–2020[EB/OL]. https://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf, 2016.
    ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017, 5: 11255–11268. doi: 10.1109/ACCESS.2017.2710056
    PAN Hui, CROWCROFT J, and YONEKI E. BUBBLE Rap: Social-based forwarding in delay-tolerant networks[J]. IEEE Transactions on Mobile Computing, 2011, 10(11): 1576–1589. doi: 10.1109/TMC.2010.246
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2792
  • HTML全文浏览量:  1083
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-27
  • 修回日期:  2019-10-30
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回