高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效宽带包络跟踪系统电路性能优化及非线性行为校正

曹韬 刘友江 杨春 周劼

曹韬, 刘友江, 杨春, 周劼. 高效宽带包络跟踪系统电路性能优化及非线性行为校正[J]. 电子与信息学报, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275
引用本文: 曹韬, 刘友江, 杨春, 周劼. 高效宽带包络跟踪系统电路性能优化及非线性行为校正[J]. 电子与信息学报, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275
Tao CAO, Youjiang LIU, Chun YANG, Jie ZHOU. Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275
Citation: Tao CAO, Youjiang LIU, Chun YANG, Jie ZHOU. Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275

高效宽带包络跟踪系统电路性能优化及非线性行为校正

doi: 10.11999/JEIT190275
基金项目: 国家自然科学基金(61601425)
详细信息
    作者简介:

    曹韬:男,1985年生,副研究员,研究方向为无线测控通信系统设计技术

    刘友江:男,1986年生,特聘研究员,研究方向为无线测控通信系统设计技术

    杨春:男,1972年生,研究员,研究方向为无线测控通信系统设计技术

    周劼:男,1972年生,研究员,研究方向为无线测控通信系统设计技术

    通讯作者:

    曹韬 caotaog@gmail.com

  • 中图分类号: TN919

Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture

Funds: The National Natural Science Foundation of China (61601425)
  • 摘要:

    为改善包络跟踪(ET)发射机带宽、效率、线性度等指标,需优化其关键电路性能并校正系统非线性行为。针对该问题,该文构建电源调制器等效模型,推导其效率极值并阐述效率优化方法;引入频率补偿网络来提升电路带宽及线性性能;基于系统非线性行为特征,提出包络增强型数字预失真模型及线性化方案;设计实际电路并搭建包络跟踪系统。对于S频段5/10/20 MHz带宽6.7 dB峰均比测试信号,该系统功放平均效率分别为61%, 54%, 44%,且矢量幅度误差(EVM)均优于1%,具有较好的带宽、效率、线性度等性能,验证了电路优化方法及非线性行为校正方案的可行性。

  • 图  1  混合型EA电路结构

    图  2  电流采样信号与开关波形示意图

    图  3  参数βh的关系曲线及不同调制信号包络幅度概率分布

    图  4  EA平均效率曲面3维视图及俯视图

    图  5  EA线性级反馈网络结构图

    图  6  频率补偿前后线性级幅频特性

    图  7  EA电路实物图及其平均效率特性

    图  8  EA电路输入、输出包络及误差信号归一化功率谱

    图  9  ET测试系统框图

    图  10  ET系统关键波形实测图(局部)

    图  11  DPD前后ET系统输出频谱测试图(局部)

    表  1  本文EA电路测试结果与近年文献结果对比

    文献/年份带宽(MHz)负载(Ω)输出范围(V)输出功率(W)效率(%)
    文献[9]/2016512.0~27.04.076.0
    文献[10]/201750~22.54.873.6
    文献[11]/20171017.59.6~26.419.477.0
    文献[12]/20171061.0~2.51.083.0
    文献[13]/20191087.0~27.042.577.1
    本文407.52.5~28.018.281.7
    下载: 导出CSV

    表  2  ET系统测试结果

    信号带宽(MHz)DPD功率(dBm)增益(dB)效率(%)ACPR1(dBc)EVM(%)
    534.411.061.3-26.77.50
    534.411.060.8-49.70.32
    1034.611.156.7-26.88.10
    1034.210.753.7-46.30.60
    2034.311.346.4-26.48.90
    2034.111.144.1-46.00.67
    下载: 导出CSV
  • BALTEANU F, MODI H, ZHU Yu, et al. Envelope tracking system for high power applications in uplink 4G/5G LTE advanced[C]. 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 863–865. doi: 10.23919/APMC.2018.8617571.
    SHI Weimin, HE Songbai, ZHU Xiaoyu, et al. Broadband continuous-mode doherty power amplifiers with noninfinity peaking impedance[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1034–1046. doi: 10.1109/TMTT.2017.2749224
    HOLZER K D, YUAN Wen, and WALLING J S. Wideband techniques for outphasing power amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(9): 2715–2725. doi: 10.1109/TCSI.2018.2800041
    LIU Youjiang, YOO C S, FAIRBANKS J, et al. A 53% PAE envelope tracking GaN power amplifier for 20 MHz bandwidth LTE signals at 880 MHz[C]. 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Austin, USA, 2016: 30–32. doi: 10.1109/PAWR.2016.7440155.
    HASSAN M, ASBECK P M, and LARSON L E. A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20 MHz LTE envelope tracking RF power amplifier[C]. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, USA, 2013: 366–368. doi: 10.1109/ISSCC.2013.6487772.
    KOMATSUZAKI Y, LANFRANCO S, KOLMONEN T, et al. A high efficiency 3.6–4.0 GHz envelope-tracking power amplifier using GaN soft-switching buck-converter[C]. 2018 IEEE/MTT-S International Microwave Symposium, Philadelphia, USA, 2018: 465–468. doi: 10.1109/MWSYM.2018.8439225.
    HASSAN M, LARSON L E, LEUNG V W, et al. A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1321–1330. doi: 10.1109/TMTT.2012.2187537
    KIM J, KIM D, CHO Y, et al. Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(6): 1648–1657. doi: 10.1109/TCSI.2015.2423771
    WANG Yazhou, JIN Qian, and RUAN Xinbo. Optimized design of the multilevel converter in series-form switch-linear hybrid envelope-tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5451–5460. doi: 10.1109/TIE.2016.2565459
    JIN Qian, RUAN Xinbo, REN Xiaoyong, et al. Step-wave switched capacitor converter for compact design of envelope tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9587–9591. doi: 10.1109/TIE.2017.2716900
    LENG Yang, RUAN Xinbo, JIN Qian, et al. High-efficiency high-bandwidth switch-linear hybrid envelope-tracking power supply with slew rate split-band method[C]. 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, USA, 2017: 2246–2252. doi: 10.1109/ECCE.2017.8096438.
    JING Yue and BAKKALOGLU B. A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3245–3256. doi: 10.1109/TMTT.2017.2678476
    XI Huan, CAO Juan, LIU Ning, et al. High bandwidth envelope tracking power supply with pulse edge independent distribution method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 5907–5917. doi: 10.1109/TIE.2018.2874580
    KIM D, KANG D, CHOI J, et al. Optimization for envelope shaped operation of envelope tracking power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1787–1795. doi: 10.1109/TMTT.2011.2140124
    LEACH W M. Feedforward compensation of the amplifier output stage for improved stability with capacitive loads[J]. IEEE Transactions on Consumer Electronics, 1988, 34(2): 334–338. doi: 10.1109/30.2950
    MKADEM F, ISLAM A, and BOUMAIZA S. Multi-band complexity reduced generalized-memory-polynomial power-amplifier digital pre-distortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1763–1774. doi: 10.1109/TMTT.2016.2561279
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1572
  • HTML全文浏览量:  906
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 修回日期:  2019-11-24
  • 网络出版日期:  2019-11-30
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回