高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性因子的改进鸟群算法在动态能耗管理中的应用

罗钧 刘泽伟 张平 刘学明 柳政

罗钧, 刘泽伟, 张平, 刘学明, 柳政. 基于非线性因子的改进鸟群算法在动态能耗管理中的应用[J]. 电子与信息学报, 2020, 42(3): 729-736. doi: 10.11999/JEIT190264
引用本文: 罗钧, 刘泽伟, 张平, 刘学明, 柳政. 基于非线性因子的改进鸟群算法在动态能耗管理中的应用[J]. 电子与信息学报, 2020, 42(3): 729-736. doi: 10.11999/JEIT190264
Jun LUO, Zewei LIU, Ping ZHAGN, Xueming LIU, Zheng LIU. Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management[J]. Journal of Electronics & Information Technology, 2020, 42(3): 729-736. doi: 10.11999/JEIT190264
Citation: Jun LUO, Zewei LIU, Ping ZHAGN, Xueming LIU, Zheng LIU. Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management[J]. Journal of Electronics & Information Technology, 2020, 42(3): 729-736. doi: 10.11999/JEIT190264

基于非线性因子的改进鸟群算法在动态能耗管理中的应用

doi: 10.11999/JEIT190264
基金项目: 国防科工局十二五(跨十三五)技术基础科研项目(JSJL2014209B004, JSJL2014209B005)
详细信息
    作者简介:

    罗钧:男,1963年生,教授,博士生导师,研究方向为模式识与人工智能、精密机械及测试计量、智能信息处理

    刘泽伟:男,1994年生,硕士生,研究方向为嵌入式系统、精密仪器及机械、测试计量技术及仪器

    张平:男,1970年生,硕士生,研究方向为精密仪器及机械、测试计量技术及仪器

    刘学明:男,1963年生,硕士生,研究方向为精密仪器及机械、测试计量技术及仪器

    通讯作者:

    罗钧 luojun@cqu.edu.cn

  • 中图分类号: TP316.7

Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management

Funds: The Science, Technology and Industry Bureau for National Defense 12th Five-year (13th Five-year) Basic Technology Research Projects (JSJL2014209B004, JSJL2014209B005)
  • 摘要:

    针对实时系统能耗管理中动态电压调节(DVS)技术的应用会导致系统可靠性下降的问题,该文提出一种基于改进鸟群(IoBSA)算法的动态能耗管理法。首先,采用佳点集原理均匀地初始化种群,从而提高初始解的质量,有效增强种群多样性;其次,为了更好地平衡BSA算法的全局和局部搜索能力,提出非线性动态调整因子;接着,针对嵌入式实时系统中处理器频率可以动态调整的特点,建立具有时间和可靠性约束的功耗模型;最后,在保证实时性和稳定性的前提下,利用提出的IoBSA算法,寻求最小能耗的解决方案。通过实验结果表明,与传统BSA等常见算法相比,改进鸟群算法在求解最小能耗上有着很强的优势及较快的处理速度。

  • 图  1  两种方法初始化点图

    图  2  频率故障率

    图  3  收敛曲线图

    表  1  部分算法参数列表

    算法参数设置
    BSA$C = S = 1.5,{a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,\,1]$ ${\rm FL} \in [0.5,\,0.9]$
    LSABSA${a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,\,1],{\rm FL} \in [0.5,\,0.9]$ ${C_{\rm{e}}} = {S_{\rm{s}}} = 0,5,{C_{\rm{s}}} = {S_{\rm{e}}} = 2.5$
    本文${a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,1],{\rm FL} \in [0.5,\,0.9]$
    IoBSA${C_{\rm{e}}} = {S_{\rm{s}}} = 0,5,{C_{\rm{s}}} = {S_{\rm{e}}} = 2$
    CBSA${Q_{\min }} = 0,{Q_{\max }} = 2,A = 0.7,r = 0.4,{P_\alpha } = 0.25$
    CJADE$F = 0.8,{C_r} = 0.5,c = 0.1,p = 0.05$
    文献[10]${\rm{limit}} = 50$
    下载: 导出CSV

    表  2  实验参数列表

    参数名参数名
    种群数60任务量10 30 50
    归一化频率0.1~1.0截止时间20~220
    WCET20~50迭代次数1000
    运行次数20惩罚因子5000
    下载: 导出CSV

    表  3  任务量为10的优化结果

    NPM-ValSt.BSA本文IoBSALSABSACSBAGWOCJADE文献[10]
    375.57Best853.45821.52896.571040.55830.83904.091187.05
    (min)Worst1110.961040.011090.471178.551053.471123.841061.25
    3427.05Mean967.95913.041005.061105.57964.941035.831147.21
    (max)Std.Dev58.1857.6660.3634.8550.4653.9255.25
    下载: 导出CSV

    表  4  任务量为30的优化结果

    NPM-ValSt.BSA本文IoBSALSABSACSBAGWOCJADE文献[10]
    1126.70Best4355.133642.204197.414048.744353.494382.294881.90
    (min)Worst5158.384936.645175.335033.735234.8535021.295470.92
    10281.15Mean4771.524368.304739.584519.134681.224677.564928.57
    (max)Std.Dev215.87345.31269.02238.77223.95150.11304.62
    下载: 导出CSV

    表  5  任务量为50的优化结果

    NPM-ValSt.BSA本文IoBSALSABSACSBAGWOCJADE文献[10]
    1877.83Best8572.388281.548610.62无效8384.888416.94无效
    (min)Worst10442.7410023.1810149.21无效无效无效无效
    17135.25Mean9557.829319.579513.31无效无效无效无效
    (max)Std.Dev587.00535.50520.50643448.64529852.0175029.971147609.95
    下载: 导出CSV
  • SALEHI M E, SAMADI M, NAJIBI M, et al. Dynamic voltage and frequency scheduling for embedded processors considering power/performance tradeoffs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(10): 1931–1935. doi: 10.1109/tvlsi.2010.2057520
    TERZOPOULOS G and KARATZA H. Performance evaluation and energy consumption of a real-time heterogeneous grid system using DVS and DPM[J]. Simulation Modelling Practice and Theory, 2013, 36: 33–43. doi: 10.1016/j.simpat.2013.04.006
    ERNST D, DAS S, LEE S, et al. Razor: Circuit-level correction of timing errors for low-power operation[J]. IEEE Micro, 2004, 24(6): 10–20. doi: 10.1109/MM.2004.85
    RONG Peng, PEDRAM M. Energy-aware task scheduling and dynamic voltage scaling in a real-time system[J]. Journal of Low Power Electronics, 2008, 4(1): 1–10. doi: 10.1166/jolpe.2008.154
    韩文雅, 王雷. 基于混合任务模型的动态电压调度在无线传感器网络中的应用[J]. 计算机应用, 2010, 30(9): 2522–2525. doi: 10.3724/SP.J.1087.2010.02522

    HAN Wenya and WANG Lei. Application of dynamic voltage scaling based on hybrid-task model in wireless sensor network[J]. Journal of Computer Applications, 2010, 30(9): 2522–2525. doi: 10.3724/SP.J.1087.2010.02522
    ZHAO Baoxian, AYDIN H, and ZHU Dakai. On maximizing reliability of real-time embedded applications under hard energy constraint[J]. IEEE Transactions on Industrial Informatics, 2010, 6(3): 316–328. doi: 10.1109/tii.2010.2051970
    晏福, 徐建中, 李奉书. 混沌灰狼优化算法训练多层感知器[J]. 电子与信息学报, 2019, 41(4): 872–879. doi: 10.11999/JEIT180519

    YAN Fu, XU Jianzhong, and LI Fengshu. Training multi-layer perceptrons using chaos grey wolf optimizer[J]. Journal of Electronics &Information Technology, 2019, 41(4): 872–879. doi: 10.11999/JEIT180519
    张兴明, 殷从月, 魏帅, 等. 基于双仲裁机制和田口正交法的猫群优化任务调度算法[J]. 电子与信息学报, 2018, 40(10): 2521–2528. doi: 10.11999/JEIT180215

    ZHANG Xingming, YIN Congyue, WEI Shuai, et al. Cat swarm optimization task scheduling algorithm based on double arbitration mechanism and Taguchi orthogonal method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2521–2528. doi: 10.11999/JEIT180215
    肖乐意, 欧阳红林, 范朝冬. 基于记忆分子动理论优化算法的多目标截面投影Otsu图像分割[J]. 电子与信息学报, 2018, 40(1): 189–199. doi: 10.11999/JEIT170301

    XIAO Leyi, OUYANG Honglin, and FAN Chaodong. Multi-objective cross section projection Otsu's method based on memory knetic-molecular theory optimization algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(1): 189–199. doi: 10.11999/JEIT170301
    罗钧, 刘永锋, 付丽. 能耗限制的实时周期任务可靠性感知调度[J]. 重庆大学学报, 2011, 34(8): 86–89. doi: 10.11835/j.issn.1000-582x.2011.08.015

    LUO Jun, LIU Yongfeng, and FU Li. Reliability-aware schedule of periodic tasks in energy-constrained real-time systems[J]. Journal of Chongqing University, 2011, 34(8): 86–89. doi: 10.11835/j.issn.1000-582x.2011.08.015
    MENG Xianbing, GAO X Z, LU Lihua, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(4): 673–687. doi: 10.1080/0952813X.2015.1042530
    杨文荣, 马晓燕, 边鑫磊. 基于Levy飞行策略的自适应改进鸟群算法[J]. 河北工业大学学报, 2017, 46(5): 10–16. doi: 10.14081/j.cnki.hgdxb.2017.05.002

    YANG Wenrong, MA Xiaoyan, and BIAN Xinlei. Adaptive improved bird swarm algorithm based on Levy flight strategy[J]. Journal of Hebei University of Technology, 2017, 46(5): 10–16. doi: 10.14081/j.cnki.hgdxb.2017.05.002
    李延延, 万仁霞. 一种改进算的鸟群算法[J]. 微电子学与计算机, 2018, 35(9): 79–84.

    LI Yanyan and WAN Renxia. An improved algorithm for bird swarm optimization[J]. Microelectronics &Computer, 2018, 35(9): 79–84.
    吴军, 王龙龙. 基于双鸟群混沌优化的Otsu图像分割算法[J]. 微电子学与计算机, 2018, 35(12): 119–124. doi: 10.19304/j.cnki.issn1000-7180.2018.12.024

    WU Jun and WANG Longlong. An Otsu image segmentation algorithm based on chaos optimization of two BSA[J]. Microelectronics &Computer, 2018, 35(12): 119–124. doi: 10.19304/j.cnki.issn1000-7180.2018.12.024
    王进成, 高岳林. 基于改进的鸟群算法求解农产品冷链物流配送路径优化问题[J]. 安徽农业科学, 2018, 46(25): 1–4. doi: 10.13989/j.cnki.0517-6611.2018.25.001

    WANG Jincheng and GAO Yuelin. Optimization problem of cold chain logistics distribution path of agricultural products based on improved algorithm of bird swarm optimization[J]. Journal of Anhui Agricultural Sciences, 2018, 46(25): 1–4. doi: 10.13989/j.cnki.0517-6611.2018.25.001
    谢国民, 干毅军, 丁会巧. 基于佳点集的蝙蝠定位算法在WSN中应用[J]. 传感技术学报, 2017, 30(8): 1252–1257. doi: 10.3969/j.issn.1004-1699.2017.08.021

    XIE Guomin, GAN Yijun, and DING Huiqiao. A positioning algorithm based on bat algorithm and good-point setsin the application of WSN[J]. Chinese Journal of Sensors and Actuators, 2017, 30(8): 1252–1257. doi: 10.3969/j.issn.1004-1699.2017.08.021
    ZHU D, MELHEM R, and CHILDERS B. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multi-processor real-time systems[C]. Proceedings of the 22nd IEEE Real-time Systems Symposium, London, UK, 2001: 84–94.
    SHEHAB M, KHADER A T, LAOUCHEDI M, et al. Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization[J]. The Journal of Supercomputing, 2019, 75(5): 2395–2422. doi: 10.1007/s11227-018-2625-x
    MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
    罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949

    LUO Jun, YANG Yongsong, and SHI Baoyu. multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  2842
  • HTML全文浏览量:  773
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-10-08
  • 网络出版日期:  2019-10-16
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回