刘海波, 杨杰, 吴正平, 等. 基于区间估计的单幅图像快速去雾[J]. 电子与信息学报, 2016, 38(2): 381–388. doi: 10.11999/JEIT150403LIU Haibo, YANG Jie, WU Zhengping, et al. Fast single image dehazing based on interval estimation[J]. Journal of Electronics &Information Technology, 2016, 38(2): 381–388. doi: 10.11999/JEIT150403
|
梁晓萍, 罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报: 自然科学版, 2017, 35(4): 17–23.LIANG Xiaoping and LUO Xiaoshu. The adaptive wiener filtering deblurring based on the genetic algorithm[J]. Journal of Guangxi Normal University:Natural Science Edition, 2017, 35(4): 17–23.
|
何人杰, 樊养余, WANG Zhiyong, 等. 基于非局部全变分正则化优化的单幅雾天图像恢复新方法[J]. 电子与信息学报, 2016, 38(10): 2509–2514. doi: 10.11999/JEIT160208HE Renjie, FAN Yangyu, WANG Zhiyong, et al. Novel single hazy image restoration method based on nonlocal total variation regularization optimization[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2509–2514. doi: 10.11999/JEIT160208
|
杨爱萍, 郑佳, 王建, 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483
|
沈峘, 李舜酩, 毛建国, 等. 数字图像复原技术综述[J]. 中国图象图形学报, 2009, 14(9): 1764–1775. doi: 10.11834/jig.20090909SHEN Huan, LI Shunming, MAO Jianguo, et al. Digital image restoration techniques: A review[J]. Journal of Image and Graphics, 2009, 14(9): 1764–1775. doi: 10.11834/jig.20090909
|
HE Fei and ZHANG Lingying. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network[J]. Journal of Process Control, 2018, 66: 51–58. doi: 10.1016/j.jprocont.2018.03.005
|
LIANG Yueji, REN Chao, WANG Haoyu, et al. Research on soil moisture inversion method based on GA-BP neural network model[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2087–2103. doi: 10.1080/01431161.2018.1484961
|
CHEN Yegang. Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network[J]. Computing, 2018, 100(8): 825–838. doi: 10.1007/s00607-018-0628-3
|
李青峰, 胡访宇. 利用BP神经网络实现监控图像盲复原[J]. 计算机仿真, 2009, 26(5): 223–226. doi: 10.3969/j.issn.1006-9348.2009.05.058LI Qingfeng and HU Fangyu. Blind restoration of monitoring image based on BP neural network[J]. Computer Simulation, 2009, 26(5): 223–226. doi: 10.3969/j.issn.1006-9348.2009.05.058
|
赵秀谊. 头脑风暴优化算法及其应用研究[D]. [硕士论文], 西安理工大学, 2013.ZHAO Xiuyi. Research and application of brain storm optimization algorithm[D]. [Master dissertation], Xi’an University of Technology, 2013.
|
SHI Yuhui. Brain Storm Optimization Algorithm[M]. Advances in Swarm Intelligence. Berlin Heidelberg: Springer, 2011: 303–309. doi: 10.1007/978-3-642-21515-5_36.
|
周恒俊. 智能优化算法及其在图像检索中的应用研究[D]. [硕士论文], 山东大学, 2016.ZHOU Hengjun. Research on intelligent optimization algorithm and its application in image retrieval[D]. [Master dissertation], Shandong University, 2016.
|
陈宏伟, 鄢来仪, 叶志伟. 头脑风暴算法在多阈值Otsu分割法中的应用[J]. 湖北工业大学学报, 2017, 32(5): 59–62. doi: 10.3969/j.issn.1003-4684.2017.05.016CHEN Hongwei, YAN Laiyi, and YE Zhiwei. Application of brain storm optimization algorithm in multilevel threshold Otsu segmentation[J]. Journal of Hubei University of Technology, 2017, 32(5): 59–62. doi: 10.3969/j.issn.1003-4684.2017.05.016
|
梁志刚, 顾军华. 改进头脑风暴优化算法与Powell算法结合的医学图像配准[J]. 计算机应用, 2018, 38(9): 2683–2688. doi: 10.11772/j.issn.1001-9081.2018020353LIANG Zhigang and GU Junhua. Medical image registration by integrating modified brain storm optimization algorithm and Powell algorithm[J]. Journal of Computer Applications, 2018, 38(9): 2683–2688. doi: 10.11772/j.issn.1001-9081.2018020353
|
HECHT-NIELSEN R. Theory of the backpropagation neural network[C]. International 1989 Joint Conference on Neural Networks, Washington, USA, 1989: 593–605. doi: 10.1109/IJCNN.1989.118638.
|
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]. The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996: 226–231.
|