高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构组全变分模型的图像压缩感知重建

赵辉 杨晓军 张静 孙超 张天骐

赵辉, 杨晓军, 张静, 孙超, 张天骐. 基于结构组全变分模型的图像压缩感知重建[J]. 电子与信息学报, 2020, 42(11): 2773-2780. doi: 10.11999/JEIT190243
引用本文: 赵辉, 杨晓军, 张静, 孙超, 张天骐. 基于结构组全变分模型的图像压缩感知重建[J]. 电子与信息学报, 2020, 42(11): 2773-2780. doi: 10.11999/JEIT190243
Hui ZHAO, Xiaojun YANG, Jing ZHANG, Chao SUN, Tianqi ZHANG. Image Compressed Sensing Reconstruction Based on Structural Group Total Variation[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2773-2780. doi: 10.11999/JEIT190243
Citation: Hui ZHAO, Xiaojun YANG, Jing ZHANG, Chao SUN, Tianqi ZHANG. Image Compressed Sensing Reconstruction Based on Structural Group Total Variation[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2773-2780. doi: 10.11999/JEIT190243

基于结构组全变分模型的图像压缩感知重建

doi: 10.11999/JEIT190243
基金项目: 国家自然科学基金(61671095)
详细信息
    作者简介:

    赵辉:女,1980年生,教授,硕士生导师,研究方向为信号与图像处理

    杨晓军:男,1994年生,硕士生,研究方向为信号与图像处理

    张静:女,1992年生,硕士生,研究方向为信号与图像处理

    孙超:男,1992年生,硕士生,研究方向为信号与图像处理

    张天骐:男,1971年生,博士后,教授,研究方向为通信信号的调制解调、盲处理、语音信号处理

    通讯作者:

    赵辉 zhaohui@cqupt.edu.cn

  • 中图分类号: TN911.73; TP391

Image Compressed Sensing Reconstruction Based on Structural Group Total Variation

Funds: The National Natural Science Foundation of China (61671095)
  • 摘要: 针对基于传统全变分(TV)模型的图像压缩感知(CS)重建算法不能有效地恢复图像的细节和纹理,从而导致图像过平滑的问题,该文提出一种基于结构组全变分(SGTV)模型的图像压缩感知重建算法。该算法利用图像的非局部自相似性和结构稀疏特性,将图像的重建问题转化为由非局部自相似图像块构建的结构组全变分最小化问题。算法以结构组全变分模型为正则化约束项构建优化模型,利用分裂Bregman迭代将算法分离成多个子问题,并对每个子问题高效地求解。所提算法很好地利用了图像自身的信息和结构稀疏特性,保护了图像细节和纹理。实验结果表明,该文所提出的算法优于现有基于全变分模型的压缩感知重建算法,在PSNR和视觉效果方面取得了显著提升。
  • 图  1  图像的结构组构造

    图  2  6幅标准测试图像

    图  3  Barbara仿真结果对比图

    图  4  Monarch仿真结果对比图

    图  5  相似块数目$c$取值不同时算法的性能比较

    图  6  采样率=0.3时,重叠块间距对算法重建性能的影响

    图  7  算法稳定性分析

    表  1  基于SGTV模型的图像CS重建算法(SGTV)的整体描述

     输入:随机投影测量矩阵${{H}}$和CS测量值${{y}}$
     初始化:$t = 0$, ${{{u}}^{(0)}} = 0$, ${{{b}}^{(0)}} = 0$, $B$, $c$, $\beta $, $\mu $;
      (1) 开始迭代:$t = 1,2, ··· ,N$
      (2)  根据式(10)计算得到${{{u}}^{(t + 1)}}$;
      (3)  令${{{r}}^{(t + 1)}} = {{{u}}^{(t + 1)}} - {{{b}}^{(t)}}$; ${{\mu = \left( {\lambda K} \right)}/{\left( {\beta N} \right)}}$;
      (4)  根据块匹配法找到$n$个结构组;
      (5)  对于每一个结构组${{{r}}_{{G_i}}}$, $i = 1,2, ··· ,n$
      (6)    利用FISTA算法迭代更新得到${{{p}}^{m + 1}}$;
      (7)    根据式(3)算法迭代更新得到${{{\hat x}}_{{G_i}}}$;
      (8) end for
      (9) 根据式(11)计算得到${{{x}}^{(t + 1)}}$;
      (10) 根据式(12)更新${{{b}}^{(t + 1)}}$;
      (11) 达到最大迭代次数,算法结束
      (12) 输出重建图像${{u}} = {{{u}}^{(t + 1)}}$
    下载: 导出CSV

    表  2  不同采样率下各图像CS重建算法重建图像的PSNR(dB)/FISM值比较

    采样率算法HouseBarbaraLeavesMonarchParrotsVesselsAvg.
    0.2TV31.54/0.907223.79/0.819022.66/0.855326.77/0.886226.51/0.901822.09/0.835625.56/0.8675
    NLTV32.59/0.919925.01/0.858424.40/0.901227.07/0.891326.52/0.924723.54/0.879826.51/0.8959
    TVNLR33.03/0.923025.68/0.890123.51/0.883427.42/0.907326.97/0.922523.34/0.871826.66/0.8997
    NGSR33.60/0.935027.470.917524.79/0.903627.83/0.909027.43/0.921724.10/0.887427.54/0.9124
    SGTV34.96/0.951929.27/0.924026.71/0.924928.59/0.923229.19/0.938625.16/0.902428.98/0.9275
    0.3TV33.76/0.938225.16/0.872325.79/0.909029.94/0.928628.68/0.930925.27/0.899228.10/0.9130
    NLTV34.96/0.942227.47/0.915727.57/0.935429.86/0.927829.02/0.946927.15/0.935229.31/0.9339
    TVNLR35.23/0.949727.92/0.915326.67/0.924930.01/0.937428.96/0.943627.08/0.932129.31/0.9338
    NGSR36.36/0.967929.54/0.943527.71/0.935930.92/0.941930.22/0.952627.26/0.935830.34/0.9463
    SGTV37.08/0.969032.20/0.955829.91/0.954331.55/0.950831.17/0.954928.36/0.944631.73/0.9549
    0.4TV35.41/0.956426.59/0.909528.76/0.941932.69/0.952030.46/0.951327.95/0.944130.31/0.9452
    NLTV36.97/0.960330.01/0.952031.04/0.968232.66/0.953230.15/0.961929.70/0.956831.76/0.9587
    TVNLR37.19/0.966430.27/0.924630.14/0.954632.95/0.960030.40/0.957629.35/0.957031.72/0.9534
    NGSR37.25/0.969531.10/0.960231.08/0.963733.28/0.959031.37/0.961930.01/0.960932.35/0.9625
    SGTV38.80/0.977534.33/0.971032.54/0.970234.20/0.966433.16/0.966631.25/0.966834.05/0.9698
    下载: 导出CSV

    表  3  采样率为0.3时,各算法的实际运行处理时间(s)

    TVNLTVTVNLRNGSRSGTV
    House (256×256)5.2775.2699.57110.52132.85
    Vessels(96×96)1.2936.7549.0963.1273.96
    平均3.2856.0174.3386.82103.01
    下载: 导出CSV
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    TSAIG Y and DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549–571. doi: 10.1016/j.sigpro.2005.05.029
    AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
    SHEN Yangmei, XIONG Hongkai, and DAI Wenrui. Multiscale dictionary learning for hierarchical sparse representation[C]. 2017 IEEE International Conference on Multimedia and Expo, Hong Kong, China, 2017: 1332–1337.
    ZHANG Jian, ZHAO Chen, ZHAO Debin, et al. Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization[J]. Signal Processing, 2014, 103: 114–126. doi: 10.1016/j.sigpro.2013.09.025
    LI Chengbo, YIN Wotao, and ZHANG Yin. TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms[EB/OL]. http://www.caam.rice.edu/~optimization/L1/TVAL3/, 2013.
    HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3909–3921. doi: 10.1109/tgrs.2017.2683719
    WAHID A and LEE H J. Image denoising method based on directional total variation filtering[C]. The 8th International Conference on Information and Communication Technology Convergence, Jeju, South Korea, 2017: 798–802.
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65.
    LIU Hangfan, XIONG Ruiqin, ZHANG Xinfeng, et al. Nonlocal gradient sparsity regularization for image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9): 1909–1921. doi: 10.1109/TCSVT.2016.2556498
    ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336–3351. doi: 10.1109/TIP.2014.2323127
    CAO Wenfei, CHANG Yi, HAN Guodong, et al. Destriping remote sensing image via low-rank approximation and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 848–852. doi: 10.1109/LGRS.2018.2811468
    SHEN Yan, LIU Qing, LOU Shuqin, et al. Wavelet-based total variation and nonlocal similarity model for image denoising[J]. IEEE Signal Processing Letters, 2017, 24(6): 877–881. doi: 10.1109/LSP.2017.2688707
    TU Bing, HUANG Siyuan, FANG Leyuan, et al. Hyperspectral image classification via weighted joint nearest neighbor and sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4063–4075. doi: 10.1109/JSTARS.2018.2869376
    XU Jin, QIAO Yuansong, FU Zhizhong, et al. Image block compressive sensing reconstruction via group-based sparse representation and nonlocal total variation[J]. Circuits, Systems, and Signal Processing, 2019, 38(1): 304–328. doi: 10.1007/s00034-018-0859-8
    ZHANG Xiaoqun, BURGER M, BRESSON X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253–276. doi: 10.1137/090746379
    ZHANG Jian, LIU Shaohui, XIONG Ruiqin, et al. Improved total variation based image compressive sensing recovery by nonlocal regularization[C]. 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2836–2839.
    GOLDSTEIN T and OSHER S. The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323–343. doi: 10.1137/080725891
    ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386. doi: 10.1109/TIP.2011.2109730
    BECK A and TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419–2434. doi: 10.1109/TIP.2009.2028250
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  4217
  • HTML全文浏览量:  1202
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 修回日期:  2020-03-07
  • 网络出版日期:  2020-04-09
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回