高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲率差分驱动的极小曲面滤波器

王满利 田子建 张元刚

王满利, 田子建, 张元刚. 曲率差分驱动的极小曲面滤波器[J]. 电子与信息学报, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216
引用本文: 王满利, 田子建, 张元刚. 曲率差分驱动的极小曲面滤波器[J]. 电子与信息学报, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216
Manli WANG, Zijian TIAN, Yuangang ZHANG. Minimal Surface Filter Driven by Curvature Difference[J]. Journal of Electronics & Information Technology, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216
Citation: Manli WANG, Zijian TIAN, Yuangang ZHANG. Minimal Surface Filter Driven by Curvature Difference[J]. Journal of Electronics & Information Technology, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216

曲率差分驱动的极小曲面滤波器

doi: 10.11999/JEIT190216
基金项目: 国家自然科学基金(51674269)
详细信息
    作者简介:

    王满利:男,1981年生,博士生,研究方向为信息与通信工程

    田子建:男,1964年生,教授,研究方向为信息与通信工程

    通讯作者:

    田子建 tianzj0726@126.com

  • 中图分类号: TN713; TP391.41

Minimal Surface Filter Driven by Curvature Difference

Funds: The National Natural Science Foundation of China (51674269)
  • 摘要:

    为提高全变分图像降噪模型的降噪性能和边缘保持性能,该文提出一种曲率差分驱动的极小曲面滤波器。首先,在平均曲率滤波器模型基础上,引入自适应曲率差分边缘探测函数,建立曲率差分驱动的极小曲面滤波器模型;接着,从微分几何理论角度,阐述该能量泛函模型的物理意义和平均曲率能量减小方法;最后,在离散的图像域,通过迭代的方式使图像每个像素邻域内的曲面向极小曲面迭代进化,实现能量泛函的平均曲率能量极小化,从而能量泛函的总能量也完成极小化。实验表明,该滤波器不仅能去除高斯噪声、椒盐噪声,还能去除这两类噪声构成的混合噪声,其降噪性能和边缘保持性能优于同类型的其他5种全变分算法。

  • 图  1  图像域Ω分解方法

    图  2  ui‚j邻域内3点的组合关系

    图  3  dk的近似求解方法

    图  4  MSF滤波器能量变化曲线

    图  5  MCF和MSF的降噪比较

    图  6  相同迭代次数下两滤波器降噪结果对比

    图  7  6种算法的降噪图像评价指标和运行时间比较

    图  8  MSF去除混合噪声的降噪图像对比

    表  1  降噪图像的评价指标数据

    噪声类型图像滤波器噪声方差噪声密度迭代次数PSNR.NPSNR.DCDERFSIM
    高斯噪声LenaMSF101028.111132.529012.34990.6873
    202022.147228.881912.35750.5065
    MCF101028.111131.248612.31280.6063
    202022.147228.708712.30200.4644
    HouseMSF5734.156035.954911.05430.6838
    101028.107232.453211.05820.5043
    202022.112928.556511.06000.3117
    MCF5734.156033.190111.04360.5879
    101028.107231.181611.04910.4750
    202022.112928.375311.04870.3315
    椒盐噪声peppersMSF0.05418.265934.340112.32450.8842
    0.10915.317632.092112.32290.8271
    MCF0.05418.265930.122712.30890.7940
    0.10915.317630.508712.28770.7083
    下载: 导出CSV
  • RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F
    DING Meng, HUANG Tingzhu, WANG Si, et al. Total variation with overlapping group sparsity for deblurring images under Cauchy noise[J]. Applied Mathematics and Computation, 2019, 341: 128–147. doi: 10.1016/j.amc.2018.08.014
    SHEN Zhengwei and CHENG Lishuang. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions[J]. Journal of Electronic Imaging, 2017, 26(5): 053005. doi: 10.1117/1.JEI.26.5.053005
    郭从洲, 秦志远, 时文俊. 基于能量泛函和视觉特性的全变分图像降噪模型[J]. 中国图象图形学报, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904

    GUO Congzhou, QIN Zhiyuan, and SHI Wenjun. TV image denoising model based on energy functionals and HVS[J]. Journal of Image and Graphics, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904
    LIU Zexian, LIU Hongwei, and WANG Xiping. Accelerated augmented Lagrangian method for total variation minimization[J]. Computational and Applied Mathematics, 2019, 38(2): 50–64. doi: 10.1007/s40314-019-0787-7
    GAO Tianling, WANG Xiaofei, LIU Qiang, et al. A fixed-point algorithm for second-order total variation models in image denoising[J]. Computational and Applied Mathematics, 2019, 38(1): 8–22. doi: 10.1007/s40314-019-0763-2
    ZOU Jian, SHEN Marui, ZHANG Ya, et al. Total variation denoising with non-convex regularizers[J]. IEEE Access, 2019, 7: 4422–4431. doi: 10.1109/ACCESS.2018.2888944
    BEN SAID A, HADJIDJ R, and FOUFOU S. Total variation for image denoising based on a novel smart edge detector: An application to medical images[J]. Journal of Mathematical Imaging and Vision, 2019, 61(1): 106–121. doi: 10.1007/s10851-018-0829-6
    LI Mingqiang, HAN Congying, WANG Ruxin, et al. Shrinking gradient descent algorithms for total variation regularized image denoising[J]. Computational Optimization and Applications, 2017, 68(3): 643–660. doi: 10.1007/s10589-017-9931-8
    王宇, 汤心溢, 罗易雪, 等. 自适应Split Bregman迭代的红外图像降噪算法[J]. 红外与毫米波学报, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546

    WANG Yu, TANG Xinyi, LUO Yixue, et al. IR image denoising algorithm based on adaptive split bregman method[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546
    FIRSOV D and LUI S H. Domain decomposition methods in image denoising using Gaussian curvature[J]. Journal of Computational and Applied Mathematics, 2006, 193(2): 460–473. doi: 10.1016/j.cam.2005.05.032
    JIDESH P and GEORGE S. Gauss curvature-driven image inpainting for image reconstruction[J]. Journal of the Chinese Institute of Engineers, 2014, 37(1): 122–133. doi: 10.1080/02533839.2012.751332
    ZHU Wei and CHAN T. Image denoising using mean curvature of image surface[J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 1–32. doi: 10.1137/110822268
    GONG Yuanhao. Spectrally regularized surfaces[D]. [Ph.D dissertation], ETH-Zürich, 2015: 127–165. doi: 10.3929/ethz-a-010438292.
    GONG Yuanhao and SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786–1798. doi: 10.1109/tip.2017.2658954
    BAI Yunjiao, ZHANG Quan, HONG Shangguan, et al. Patch similarity modulus and difference curvature based fourth-order partial differential equation for image denoising[J]. Mathematical Problems in Engineering, 2015, 2015: 636295. doi: 10.1155/2015/636295
    YIN Xuehui and ZHOU Shangbo. Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015: 930984. doi: 10.1155/2015/930984
    DONOHO D L and JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425–455. doi: 10.1093/biomet/81.3.425
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2436
  • HTML全文浏览量:  980
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-10-26
  • 网络出版日期:  2019-11-11
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回