高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近天底干涉SAR动态海面高程测量误差分析

陈尧 黄默 王小青 黄海风

陈尧, 黄默, 王小青, 黄海风. 近天底干涉SAR动态海面高程测量误差分析[J]. 电子与信息学报, 2020, 42(3): 547-554. doi: 10.11999/JEIT190191
引用本文: 陈尧, 黄默, 王小青, 黄海风. 近天底干涉SAR动态海面高程测量误差分析[J]. 电子与信息学报, 2020, 42(3): 547-554. doi: 10.11999/JEIT190191
Yao CHEN, Mo HUANG, Xiaoqing WANG, Haifeng HUANG. Error Analysis of Dynamic Sea Surface Height Measurement by Near-nadir Interferometric SAR[J]. Journal of Electronics & Information Technology, 2020, 42(3): 547-554. doi: 10.11999/JEIT190191
Citation: Yao CHEN, Mo HUANG, Xiaoqing WANG, Haifeng HUANG. Error Analysis of Dynamic Sea Surface Height Measurement by Near-nadir Interferometric SAR[J]. Journal of Electronics & Information Technology, 2020, 42(3): 547-554. doi: 10.11999/JEIT190191

近天底干涉SAR动态海面高程测量误差分析

doi: 10.11999/JEIT190191
基金项目: 国家自然科学基金重大研究计划(91438202)
详细信息
    作者简介:

    陈尧:男,1995年生,博士生,研究领域为雷达信号处理与系统仿真

    黄默:男,1973年生,研究员,博士生导师,研究领域为雷达系统总体

    王小青:男,1978年生,教授,博士生导师,研究领域为SAR海洋遥感与机理

    黄海风:男,1976年生,教授,博士生导师,研究方向为分布式星载系统理论

    通讯作者:

    陈尧 chenyao1995@ime.ac.cn

  • 中图分类号: TN959.6

Error Analysis of Dynamic Sea Surface Height Measurement by Near-nadir Interferometric SAR

Funds: The Major Research Plan of the Natural Science Foundation of China (91438202)
  • 摘要:

    采用近天底的宽刈幅干涉高度计是近年来新发展的海面高程测量技术,与陆地高程测量不同,海浪一直处于随机运动之中,其动态特性会在合成孔径雷达(SAR)成像和干涉处理中引入显著误差。对于厘米级的干涉测量精度要求来说,该误差是主要误差源之一。该文研究了由海面特性引起的高程误差机理及其对于近天底干涉SAR测高精度的影响,建立了运动误差理论模型,同时考虑了电磁偏差与叠掩偏差影响。基于不同SAR工作体制,在不同海况下进行了理论近似仿真,并进行了干涉SAR全链路仿真,全链路仿真结果能够与理论仿真较好地吻合,验证了误差模型的正确。结果显示由海浪引起的误差随着多普勒中心频率近似呈线性变化,且与目标散射加权径向速度成正比。误差不仅与海浪特性相关,还与雷达系统参数相关,这能为未来系统设计、误差预算和海面高程处理提供参考。

  • 图  1  干涉SAR运动目标测量几何示意图

    图  2  误差仿真流程图

    图  3  部分海洋仿真场景(10 m/s风速)

    图  4  条带模式理论仿真误差分布

    图  5  TOPS模式理论仿真误差分布

    图  6  理论近似仿真与全链路仿真误差

    图  7  误差沿方位向变化曲线

    表  1  理论仿真系统参数

    仿真系统参数参数值
    平台高度800 km
    基线10 m
    中心频率Ka波段
    极化方式HH
    入射角4°~4.7°
    距离采样率0.8 m
    方位采样率5 m
    距离分辨率1 m
    方位分辨率50 m
    下载: 导出CSV

    表  2  条带模式下误差RMS

    海况RMS(cm)
    低海况0.2670
    中等海况1.3154
    高海况6.6361
    下载: 导出CSV

    表  3  TOPS模式下误差RMS

    海况RMS(cm)
    低海况1.9598
    中等海况2.2621
    高海况6.9801
    下载: 导出CSV

    表  4  实验验证系统参数

    实验系统参数参数值
    平台高度852 km
    基线12 m
    中心频率Ka波段
    极化方式HH
    入射角9°~12°
    带宽65 MHz
    脉冲重复频率3005 Hz
    距离分辨率3 m
    方位分辨率15 m
    下载: 导出CSV
  • FU L L and CAZENAVE A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications[M]. San Diego: Academic Press, 2001: 11–12.
    ZAWADZKI L and ABLAIN M. Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a[J]. Ocean Science, 2016, 12(1): 9–18. doi: 10.5194/os-12-9-2016
    VAZE P, KAKI S, LIMONADI D, et al. The surface water and ocean topography mission[C]. 2018 IEEE Aerospace Conference, Big Sky, USA, 2018: 1–9. doi: 10.1109/AERO.2018.8396504.
    FJØRTOFT R, GAUDIN J M, POURTHIÉ N, et al. KaRIn on SWOT: Characteristics of near-nadir Ka-band interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2172–2185. doi: 10.1109/TGRS.2013.2258402
    ESTEBAN F D, POLLARD B V P, and ABELSON R. SWOT project mission performance and error budget[R]. JPL, NASA, 2017.
    ZHANG Yunhua, SHI Xiaojin, WANG Hongjian, et al. Interferometric imaging radar altimeter on board Chinese Tiangong-2 Space Laboratory[C]. 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 851–853. doi: 10.23919/APMC.2018.8617189.
    KONG Weiya, CHONG Jinsong, and TAN Hong. Performance analysis of ocean surface topography altimetry by Ku-band near-nadir interferometric SAR[J]. Remote Sensing, 2017, 9(9): 933–947. doi: 10.3390/rs9090933
    PERAL E, RODRÍGUEZ E, and ESTEBAN-FERNÁNDEZ D. Impact of surface waves on SWOT’s projected ocean accuracy[J]. Remote Sensing, 2015, 7(11): 14509–14529. doi: 10.3390/rs71114509
    ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. doi: 10.1109/5.838084
    PIRES N, FERNANDES M J, GOMMENGINGER C, et al. Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1448–1462. doi: 10.1109/tgrs.2018.2866773
    DUBOIS P and CHAPRON B. Characterization of the ocean waves signature to assess the Sea State Bias in wide-swath interferometric altimetry[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 3789–3792. doi: 10.1109/IGARSS.2018.8518813.
    CHEN Yao, WANG Xiaoqing, HUANG Mo, et al. Analysis of the sea state bias in interferometric radar altimeter[C]. 2018 China International SAR Symposium, Shanghai, China, 2018: 1–7. doi: 10.1109/SARS.2018.8551968.
    PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691
    ROMEISER R, ALPERS W, and WISMANN V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25237–25250. doi: 10.1029/97jc00190
    APEL J R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter[J]. Journal of Geophysical Research: Oceans, 1994, 99(C8): 16269–16291. doi: 10.1029/94jc00846
    余颖, 王小青, 朱敏慧, 等. 基于二阶散射的海面三尺度雷达后向散射模型[J]. 电子学报, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022

    YU Ying, WANG Xiaoqing, ZHU Minhui, et al. Three-scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022
    MANCON S, GUARNIERI A M, GIUDICI D, et al. On the phase calibration by multisquint analysis in TOPSAR and stripmap interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 134–147. doi: 10.1109/TGRS.2016.2598686
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2366
  • HTML全文浏览量:  1056
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-08-30
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回