高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线传感网络量化及能量优化策略

吕敬祥 罗文浪

吕敬祥, 罗文浪. 无线传感网络量化及能量优化策略[J]. 电子与信息学报, 2020, 42(5): 1118-1124. doi: 10.11999/JEIT190185
引用本文: 吕敬祥, 罗文浪. 无线传感网络量化及能量优化策略[J]. 电子与信息学报, 2020, 42(5): 1118-1124. doi: 10.11999/JEIT190185
Jingxiang LÜ, Wenlang LUO. Quantization and Energy Optimization Strategy of Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1118-1124. doi: 10.11999/JEIT190185
Citation: Jingxiang LÜ, Wenlang LUO. Quantization and Energy Optimization Strategy of Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1118-1124. doi: 10.11999/JEIT190185

无线传感网络量化及能量优化策略

doi: 10.11999/JEIT190185
基金项目: 国家自然科学基金(51867011),江西省教育厅科技计划项目(GJJ180576),省部重点实验室开放基金(WE2016014)
详细信息
    作者简介:

    吕敬祥:男,1977生,博士,讲师,研究方向为物联网

    罗文浪:男,1967生,博士,教授,研究方向为智能信息处理

    通讯作者:

    罗文浪 lpanpan2005@sina.com.cn

  • 中图分类号: TN915.04

Quantization and Energy Optimization Strategy of Wireless Sensor Networks

Funds: The National Natural Science Foundation of China (51867011), The Education Office Science and Technology Plan Project of Jiangxi Province (GJJ180576), The Provincial Key Laboratory Open Fund (WE2016014)
  • 摘要:

    由于无线传感网络(WSN)存在能量和带宽的限制,在网络中直接传送模拟信号受到了极大地制约,因此对模拟信号量化是节省网络能量和保证有效带宽的重要手段。为此,该文以融合中心的重构绝对均值误差最小为原则,设计一种网络量化及能量优化方法。首先,针对单传感器,在能量固定的情况下推导了最优量化位数及在量化位数固定的情况下推导了最优能量分配。其次,在单传感器的基础上,进一步推导多传感器情况下最优量化位数及最优能量分配。以上两种情况都考虑了传感器测量噪声及信道衰落损耗。最后,通过数值仿真方法验证了文中所提方法的正确性,并将其与等能量分配进行了比较,获得了较好的效果。

  • 图  1  单传感器传播到融合中心模型图

    图  2  多链路模型

    图  3  等能量和最优能量分配重构误差比较

    图  4  最优能量分配因子

    图  5  等能量分配时不同信噪比重构误差

    图  6  量化位长度固定时重构误差比较

    图  7  量化位长度不固定时重构误差比较

    图  8  最优量化位固定时最优能量分配

  • 刘伟, 杜佳鸿, 贾素玲, 等. 能量有效的无线传感器网络分簇路由协议[J]. 北京航空航天大学学报, 2019, 45(1): 50–56. doi: 10.13700/j.bh.1001-5965.2018.0251

    LIU Wei, DU Jiahong, JIA Suling, et al. Energy efficient clustering routing protocol for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 50–56. doi: 10.13700/j.bh.1001-5965.2018.0251
    ALVI A N, BOUK S H, AHMED S H, et al. BEST-MAC: Bitmap-assisted efficient and scalable TDMA-based WSN MAC protocol for smart cities[J]. IEEE Access, 2016, 4: 312–322. doi: 10.1109/ACCESS.2016.2515096
    QUINTERO V, PEREZ A, ESTEVEZ C, et al. State-of-charge estimation to improve decision making by MAC protocols used in WSNs[J]. Electronics Letters, 2019, 55(3): 161–163. doi: 10.1049/el.2018.7666
    张聚伟, 王宇, 杨挺. 基于数据融合的有向传感器网络全覆盖部署[J]. 传感技术学报, 2017, 30(1): 139–145. doi: 10.3969/j.issn.1004-1699.2017.01.025

    ZHANG Juwei, WANG Yu, and YANG Ting. Full coverage deployment algorithm of directional sensor network based on data fusion[J]. Chinese Journal of Sensors and Actuators, 2017, 30(1): 139–145. doi: 10.3969/j.issn.1004-1699.2017.01.025
    ZHANG Senlin, CHEN Huayan, LIU Meiqin, et al. Optimal quantization scheme for data-efficient target tracking via UWSNs using quantized measurements[J]. Sensors, 2017, 17(11): 2565–2584. doi: 10.3390/s17112565
    ZHANG Linxia, NIU Dunbiao, SONG Enbin, et al. Joint optimization of dimension assignment and compression in distributed estimation fusion[J]. IEEE Transactions on Signal Processing, 2019, 67(9): 2453–2468. doi: 10.1109/TSP.2019.2904935
    CHEN Bo, ZHANG Wenan, and YU Li. Distributed finite-horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 797–812. doi: 10.1109/tsp.2013.2294603
    GUO Xiaoxi, LEONG A S, and DEY S. Estimation in wireless sensor networks with security constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 544–561. doi: 10.1109/TAES.2017.2649178
    郭黎利, 高飞, 孙志国. 无线传感器网络中基于多比特量化的极大似然分布式估计方法[J]. 电子学报, 2016, 44(11): 2773–2779. doi: 10.3969/j.issn.0372-2112.2016.11.029

    GUO Lili, GAO Fei, and SUN Zhiguo. Multi-level quantization scheme for distributed maximum likelihood estimation in wireless sensor networks[J]. Acta Electronica Sinica, 2016, 44(11): 2773–2779. doi: 10.3969/j.issn.0372-2112.2016.11.029
    王瑛, 邹芳, 王飞雪, 等. 多次观测信号检测的最优量化[J]. 电子学报, 2008, 36(3): 575–580. doi: 10.3321/j.issn:0372-2112.2008.03.032

    WANG Ying, ZOU Fang, WANG Feixue, et al. Optimum quantization for multi-observation signal detection[J]. Acta Electronica Sinica, 2008, 36(3): 575–580. doi: 10.3321/j.issn:0372-2112.2008.03.032
    BLUM R S. Asymptotically optimum quantization with time invariant breakpoints for signal detection[J]. IEEE Transactions on Information Theory, 1991, 37(2): 402–407. doi: 10.1109/18.75265
    ZHOU Yan, LI Jianxun, and WANG Dongli. Target tracking in wireless sensor networks using adaptive measurement quantization[J]. Science China Information Sciences, 2012, 55(4): 827–838. doi: 10.1007/s11432-011-4327-3
    LEE J. Optimal power allocating for correlated data fusion in decentralized WSNs using algorithms based on swarm intelligence[J]. Wireless Networks, 2017, 23(5): 1655–1667. doi: 10.1007/s11276-017-1454-9
    MOHAJERZADEH A H, YAGHMAEE M H, and FAKOOR V. Total data collection algorithm based on estimation model for wireless sensor network[J]. Wireless Personal Communications, 2015, 81(2): 745–778. doi: 10.1007/s11277-014-2156-6
    LEE E A and MESSERSCHMITT D G. Digital Communication[M]. Boston: Kluwer Academic, 1988.
    KAY S M. Fundamentals of Statistical Signal Processing, Volume Ⅲ: Practical Algorithm Development[M]. Englewood Cliffs: Prentice Hall, 2013: 415–416.
    SRIPAD A and SNYDER D. A necessary and sufficient condition for quantization errors to be uniform and white[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(5): 442–448. doi: 10.1109/TASSP.1977.1162977
  • 加载中
图(8)
计量
  • 文章访问数:  2314
  • HTML全文浏览量:  1207
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-11-07
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回