An Improved Provable Secure Certificateless Aggregation Signature Scheme for Vehicular Ad Hoc NETworks
-
摘要:
车联网(VANETs)是组织车-X(X:车、路、行人及互联网等)之间的无线通信和信息交换的大型网络,是智慧城市重要组成部分。其消息认证算法的安全与效率对车联网至关重要。该文分析王大星等人的VANETs消息认证方案的安全不足,并提出一种改进的可证安全的无证书聚合签名方案。该文方案利用椭圆曲线密码构建了一个改进的安全无证书聚合认证方案。该方案降低了密码运算过程中的复杂性,同时实现条件隐私保护功能。严格安全分析证明该文方案满足VANETs的安全需求。性能分析表明该文方案相比王大星等人方案,较大幅度地降低了消息签名、单一验证以及聚合验证算法的计算开销,同时也减少了通信开销。
Abstract:Vehicular Ad hoc NETworks (VANETs) which is an important part of smart cities are large networks that organize wireless communication and information exchange between vehicles and X (X: cars, roads, pedestrians, and the Internet). The security and efficiency of the message authentication algorithm are crucial to the VANETs. After analyzing the security shortage of Wang Daxing et al VANETs message authentication scheme, an improved provable secure certificateless aggregation signature scheme for VANETs is proposed. The scheme constructs a secure certificateless aggregation authentication scheme by using Elliptic Curve Cryptography (ECC) and reduces the complexity of the cryptographic operation process, while achieving user’s conditional privacy protection. Rigid security analysis proves that the scheme satisfies the security requirements of VANETs. The performance analysis shows the proposed scheme considerably reduces the computational cost of message signature, single verification and aggregation verification algorithm, and reduces the communication cost when compared with Wang schemes.
-
表 1 密码运算的执行时间(
${\rm{ms}} $ )运算操作名称 缩写 执行时间 双线性对 双线性对运算,$e$ ${T_{\rm{d}} }$ 6.4164 乘法运算,$x \cdot P$ ${T_{\rm{dm}}}$ 2.6439 加法运算,$P + Q$ ${T_{\rm{da}} }$ 0.0146 椭圆曲线 乘法运算,$x \cdot Q$ ${T_{\rm{em}}}$ 0.7358 加法运算,$P + Q$ ${T_{\rm{ea}}}$ 0.0040 单向Hash运算 ${T_{\rm{h}} }$ 0.0002 表 2 计算开销比较(ms)
签名算法 验证算法 聚合验证算法 Wang方案 $ 4{T_{\rm{dm}} } +2{T_{\rm{da}}} + {T_{\rm{h}}} \approx 10.605 $ $3{T_{\rm{d}}} + 3{T_{\rm{dm}}} + {T_{\rm{da}}} + 2{T_{\rm{h}}} \approx 27.1959 $ $ 3{T_{\rm{d}}} + 3n{T_{\rm{dm}}} + \left( {3n - 2} \right){T_{\rm{da}}} + 2n{T_{\rm{h}}} \approx 7.9759n + 19.22$ Zhong方案 $ 4{T_{\rm{dm}} } + 2{T_{\rm{da}}} + 2{T_{\rm{h}}} \approx 10.6052 $ $ 3{T_{\rm{d}}} + 2{T_{\rm{dm}}} + {T_{\rm{da}}} + 2{T_{\rm{h}}} \approx 24.5376$ $ 3{T_{\rm{d}}} + 2n{T_{\rm{dm}}} + \left( {2n - 1} \right){T_{\rm{da}}} + 2n{T_{\rm{h}}} \approx 5.3174n + 19.2346$ 本文方案 $ {T_{\rm{em}}} + 2{T_{\rm{h}}} \approx 0.7362 $ $ 4{T_{\rm{em}}} + 3{T_{\rm{ea}}} + 3{T_{\rm{h}}} \approx 2.9558 $ $\left( {2n + 2} \right){T_{\rm{em}}} + 3n{T_{\rm{ea}}} + 3n{T_{\rm{h}}} \approx 1.4842n + 1.4716 $ 表 3 通信开销比较
方案 消息 通信开销(Byte) Wang方案 $\begin{array}{l} \left\{ {m_i},{\delta _i} = ({U_i},{V_i}),\right.\\ \left.{P_i},{F_i} = (F{1_i},F{2_i})\right\} \end{array}$ 576 Zhong方案 $\left\{ \begin{array}{l}{m_i},{{\mathop{\rm PID}\nolimits} _i},{{\mathop{\rm vpk}\nolimits} _i},\\{t_i},{\sigma _i} = \left( {{R_i},{T_i}} \right)\end{array} \right\}$ 724 本文方案 $\begin{array}{l}\{ {m_i},{\delta _i} = ({U_i},{v_i}),\\{P_i},{F_i} = ({{\rm ID}} _i^*,{T_i})\} \end{array}$ 140 -
刘哲, 刘建伟, 伍前红, 等. 车载网络中安全有效分布式的假名生成[J]. 通信学报, 2015, 36(11): 33–40. doi: 10.11959/j.issn.1000-436x.2015253LIU Zhe, LIU Jianwei, WU Qianhong, et al. Secure and efficient distributed pseudonym generation in VANET[J]. Journal on Communications, 2015, 36(11): 33–40. doi: 10.11959/j.issn.1000-436x.2015253 ZHANG Hui. Insecurity of a certificateless aggregate signature scheme[J]. Security and Communication Networks, 2016, 9(11): 1547–1552. doi: 10.1002/sec.1447 HA J. An efficient and robust anonymous authentication scheme in global mobility networks[J]. International Journal of Security and Its Applications, 2015, 9(10): 297–312. doi: 10.14257/ijsia.2015.9.10.27 SHEN Limin, MA Jianfeng, LIU Ximeng, et al. A provably secure aggregate signature scheme for healthcare wireless sensor networks[J]. Journal of Medical Systems, 2016, 40(11): No. 244. doi: 10.1007/s10916-016-0613-3 IWASAKI T, YANAI N, INAMURA M, et al. Tightly-secure identity-based structured aggregate signature scheme under the computational Diffie-Hellman assumption[C]. The 30th IEEE International Conference on Advanced Information Networking and Applications, Crans-Montana, Australia, 2016: 669–676. doi: 10.1109/AINA.2016.99. HORNG S J, TZENG S F, HUANG P H, et al. An efficient certificateless aggregate signature with conditional privacy-preserving for vehicular sensor networks[J]. Information Sciences, 2015, 317: 48–66. doi: 10.1016/j.ins.2015.04.033 宋成, 张明月, 彭维平, 等. 基于非线性对的车联网无证书批量匿名认证方案研究[J]. 通信学报, 2017, 38(11): 35–43. doi: 10.11959/j.issn.1000-436x.2017227SONG Cheng, ZHANG Mingyue, PENG Weiping, et al. Research on pairing-free certificateless batch anonymous authentication scheme for VANET[J]. Journal on Communications, 2017, 38(11): 35–43. doi: 10.11959/j.issn.1000-436x.2017227 王大星, 滕济凯. 车载网中可证安全的无证书聚合签名算法[J]. 电子与信息学报, 2018, 40(1): 11–17. doi: 10.11999/JEIT170340WANG Daxing and TENG Jikai. Probably secure cetificateless aggregate signature algorithm for vehicular ad hoc network[J]. Journal of Electronics &Information Technology, 2018, 40(1): 11–17. doi: 10.11999/JEIT170340 BAYAT M, BARMSHOORY M, RAHIMI M, et al. A secure authentication scheme for VANETs with batch verification[J]. Wireless Networks, 2014, 21(5): 1733–1743. doi: 10.1007/s11276-014-0881-0 CHEN L, CHENG Z, and SMART N P. Identity-based key agreement protocols from pairings[J]. International Journal of Information Security, 2007, 6(4): 213–241. doi: 10.1007/s10207-006-0011-9 ZHANG Chenxi, LU Rongxing, LIN Xiaodong, et al. An efficient identity-based batch verification scheme for vehicular sensor networks[C]. The 27th IEEE Conference on Computer Communications, Phoenix, USA, 2008: 246–250. doi: 10.1109/INFOCOM.2008.58. SHIM K A. CPAS: An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1874–1883. doi: 10.1109/TVT.2012.2186992 LEE C C and LAI Yanming. Toward a secure batch verification with group testing for VANET[J]. Wireless Networks, 2013, 19(6): 1441–1449. doi: 10.1007/s11276-013-0543-7 CHIM T W, YIU S M, HUI L C K, et al. SPECS: Secure and privacy enhancing communications schemes for VANETs[J]. Ad Hoc Networks, 2011, 9(2): 189–203. doi: 10.1016/j.adhoc.2010.05.005 吴黎兵, 谢永, 张宇波, 等. 面向车联网高效安全的消息认证方案[J]. 通信学报, 2016, 37(11): 1–10. doi: 10.11959/j.issn.1000-436x.2016211WU Libing, XIE Yong, ZHANG Yubo, et al. Efficient and secure message authentication scheme for VANET[J]. Journal on Communications, 2016, 37(11): 1–10. doi: 10.11959/j.issn.1000-436x.2016211 LU Rongxing, LIN Xiaodong, ZHU Haojin, et al. ECPP: Efficient conditional privacy preservation protocol for secure vehicular communications[C]. The 27th Conference on Computer Communications, Phoenix, USA, 2008: 1229–1237. doi: 10.1109/INFOCOM.2008.179. ZHONG Hong, HAN Shunshun, CUI Jie, et al. Privacy-preserving authentication scheme with full aggregation in VANET[J]. Information Sciences, 2019, 476: 211–221. doi: 10.1016/j.ins.2018.10.021 JIA Xiaoying, HE Debiao, LIU Qin, et al. An efficient provably-secure certificateless signature scheme for internet-of-things deployment[J]. Ad Hoc Networks, 2018, 71: 78–87. doi: 10.1016/j.adhoc.2018.01.001 POINTCHEVAL D and STERN J. Security proofs for signature schemes[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Saragossa, Spain, 1996: 387–398.