高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳健高效通用SAR图像稀疏特征增强算法

杨磊 李埔丞 李慧娟 方澄

杨磊, 李埔丞, 李慧娟, 方澄. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826-2835. doi: 10.11999/JEIT190173
引用本文: 杨磊, 李埔丞, 李慧娟, 方澄. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826-2835. doi: 10.11999/JEIT190173
Lei YANG, Pucheng LI, Huijuan LI, Cheng FANG. Robust and Efficient Sparse-feature Enhancementfor Generalized SAR Imagery[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2826-2835. doi: 10.11999/JEIT190173
Citation: Lei YANG, Pucheng LI, Huijuan LI, Cheng FANG. Robust and Efficient Sparse-feature Enhancementfor Generalized SAR Imagery[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2826-2835. doi: 10.11999/JEIT190173

稳健高效通用SAR图像稀疏特征增强算法

doi: 10.11999/JEIT190173
基金项目: 国家自然科学基金(61601470),天津市自然科学基金(16JCYBJC41200),中央高校基本科研业务费专项资金(3122018C005)
详细信息
    作者简介:

    杨磊:男,1984年生,副教授,研究方向为高分辨SAR成像及机器学习理论应用

    李埔丞:男,1992年生,硕士生,研究方向为高分辨SAR成像稀疏特征增强

    李慧娟:女,1996年生,硕士生,研究方向为高分辨SAR成像稀疏特征增强

    方澄:男,1980年生,讲师,研究方向为深度学习及高性能计算

    通讯作者:

    杨磊 yanglei840626@163.com

  • 中图分类号: TN957.52

Robust and Efficient Sparse-feature Enhancementfor Generalized SAR Imagery

Funds: The National Natural Science Foundation of China (61601470), The Natural Science Foundation of Tianjin, China (16JCYBJC41200), The Fundamental Research Funds for the Central Universities of Ministry of Education of China (3122018C005)
  • 摘要: 针对合成孔径雷达(SAR)成像中的稀疏特征增强问题,传统方法难以在精度与效率之间实现有效的平衡。该文提出基于复数交替方向多乘子方法(C-ADMM),针对SAR稀疏特征增强建立增广的拉格朗日优化方程,并引入复数${\ell _1}$范数邻近算子,基于高斯-赛德尔思想进行对偶迭代运算,从而在复数回波数据域内对多种SAR模式的实测数据进行成像。实验部分首先通过仿真数据的相变图(PTD)验证C-ADMM算法对于复数数据的稀疏恢复性能,然后选取地面静止场景和地面运动目标的原始SAR图像和逆SAR图像实测数据,与凸优化(CVX)方法和贝叶斯压缩感知(BCS)方法进行对比试验,最后验证了该文所提算法在稀疏特征增强应用中的稳健性、高效性和通用性。
  • 图  1  SAR成像几何模型

    图  2  实数软阈值算子示意图

    图  3  复数软阈值算子示意图

    图  4  C-ADMM在无噪声和10 db信噪比情况下的相变图

    图  5  SAR大图C-ADMM稀疏特征增强成像结果

    图  6  SAR局部C-ADMM稀疏特征增强成像结果

    图  7  GMTI 模式C-ADMM稀疏特征增强成像结果

    图  8  ISAR模式C-ADMM不同降采样成像结果

    图  9  ISAR模式C-ADMM不同信噪比成像结果

    表  1  C-ADMM稀疏特征增强算法流程

    (1) 初始化,输入SAR原始数据;
    (2) 信号预处理,得到通用信号模型$S\left( {\hat r,t} \right)$或$S\left( {\hat r,{t'}} \right)$;
    (3) 设定初值${{X}^0} = {{Z}^0} = {{U}^0} = 0$,构造字典${A}$=${{A}_0}$或${A}\left( {{\gamma _d}} \right)$;
    (4) 设定迭代次数与目标精度,若停止准则不满足,进行循环;
    (5) 更新目标图像
      ${{X}^{k + 1}} = {\left( {{{A}^{\rm{H}}}{A} + \rho {I}} \right)^{ - 1}}\left\{ {{{A}^{\rm{H}}}{Y} + \rho \left( {{{Z}^k} - {{U}^k}} \right)} \right\}$;
    (6) 更新软阈值${{Z}^{k + 1}} = {S_{\lambda /\rho }}\left( {{{X}^{k + 1}} + {{U}^k}} \right)$;
    (7) 更新对偶变量${{U}^{k + 1}} = {{U}^k} + {{X}^{k + 1}} - {{Z}^{k + 1}}$;
    (8) 若不满足停止准则,继续步骤5—步骤7,若满足停止准则,跳 出循环;
    (9) 输出稀疏特征增强后的图像。
    下载: 导出CSV
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    BARANIUK R G. Compressive sensing [Lecture Notes][J]. IEEE Signal Processing Magazine, 2007, 24(4): 118–121. doi: 10.1109/MSP.2007.4286571
    TELLO M T, LOPEZ-DEKKER P, AND MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(22): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    ÖNHON N Ö and CETIN M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075–2088. doi: 10.1109/TIP.2011.2179056
    YANG Lei, ZHAO Lifan, ZHOU Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1443–1455. doi: 10.1109/JSTARS.2016.2611005
    YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    ZHAO Lifan, WANG Lu, BI Guoan, et al. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392–6403. doi: 10.1109/TGRS.2013.2296497
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    MUTHUKRISHNAN S. Data streams: Algorithms and applications[J]. Foundations and Trends ® in Theoretical Computer Science, 2005, 1(2): 117–236. doi: 10.1561/0400000002
    BOYD S, PARIKH N, CHU E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
    MALEKI A, ANITORI L, YANG Zai, et al. Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
    侯丽丽, 郑明洁, 宋红军, 等. 多通道高分辨率宽测绘带SAR系统杂波抑制技术研究[J]. 电子与信息学报, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659

    HOU Lili, ZHENG Mingjie, SONG Hongjun, et al. Research on clutter suppression for multichannel high-resolution wide-swath SAR System[J]. Journal of Electronics &Information Technology, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659
    王力宝, 许稼, 向家彬, 等. 基于DPCA和多分辨分析的SAR微弱运动目标检测[J]. 电子与信息学报, 2007, 29(12): 2843–2847. doi: 10.3724/SP.J.1146.2006.00710

    WANG Libao, XU Jia, XIANG Jiabin, et al. SAR weak moving target detection based on DPCA and multi-resolution analysis[J]. Journal of Electronics &Information Technology, 2007, 29(12): 2843–2847. doi: 10.3724/SP.J.1146.2006.00710
    金艳, 段鹏婷, 姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013

    JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Electronic Industry Press, 2005.
    TIBSHIRANI R. Regression shrinkage and selection via the LASSO: A retrospective[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 2011, 73(3): 273–282. doi: 10.1111/J.1467-9868.2011.00771.X
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
    张增辉, 郁文贤. 稀疏微波SAR图像特征分析与目标检测研究[J]. 雷达学报, 2016, 5(1): 42–56. doi: 10.12000/JR15097

    ZHANG Zenghui and YU Wenxian. Feature understanding and target detection for sparse microwave synthetic aperture radar images[J]. Journal of Radars, 2016, 5(1): 42–56. doi: 10.12000/JR15097
    刘向阳, 杨君刚, 孟进, 等. 低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像[J]. 雷达学报, 2017, 6(3): 316–323. doi: 10.12000/JR17011

    LIU Xiangyang, YANG Jungang, MENG Jin, et al. Sparse three-dimensional imaging based on Hough transform for forward-looking array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316–323. doi: 10.12000/JR17011
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3296
  • HTML全文浏览量:  1208
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-08-23
  • 网络出版日期:  2019-09-12
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回