高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低秩表示的鲁棒判别特征子空间学习模型

李骜 刘鑫 陈德运 张英涛 孙广路

李骜, 刘鑫, 陈德运, 张英涛, 孙广路. 基于低秩表示的鲁棒判别特征子空间学习模型[J]. 电子与信息学报, 2020, 42(5): 1223-1230. doi: 10.11999/JEIT190164
引用本文: 李骜, 刘鑫, 陈德运, 张英涛, 孙广路. 基于低秩表示的鲁棒判别特征子空间学习模型[J]. 电子与信息学报, 2020, 42(5): 1223-1230. doi: 10.11999/JEIT190164
Ao LI, Xin LIU, Deyun CHEN, Yingtao ZHANG, Guanglu SUN. Robust Discriminative Feature Subspace Learning Based on Low Rank Representation[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1223-1230. doi: 10.11999/JEIT190164
Citation: Ao LI, Xin LIU, Deyun CHEN, Yingtao ZHANG, Guanglu SUN. Robust Discriminative Feature Subspace Learning Based on Low Rank Representation[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1223-1230. doi: 10.11999/JEIT190164

基于低秩表示的鲁棒判别特征子空间学习模型

doi: 10.11999/JEIT190164
基金项目: 国家自然科学基金 (61501147),黑龙江省青年创新人才计划(UNPYSCT-2018203),黑龙江省自然科学基金优秀青年基金(YQ2019F011),黑龙江省高等学校基本科研业务专项 (LGYC2018JQ013),哈尔滨市应用技术研究与开发项目(2017RALX006)
详细信息
    作者简介:

    李骜:男,1986年生,博士,副教授,研究方向为计算机视觉及其模式识别、机器学习

    刘鑫:男,1993年生,硕士生,研究方向为机器学习、模式识别

    陈德运:男,1962年生,博士,教授,博士生导师,研究方向为探测与成像技术、模式识别

    张英涛:女,1975年生,博士,副教授,研究方向为人工智能与信息处理

    孙广路:男,1979年生,博士,教授,博士生导师,研究方向为机器学习、网络安全

    通讯作者:

    李骜 dargonboy@126.com

  • 中图分类号: TN911.73

Robust Discriminative Feature Subspace Learning Based on Low Rank Representation

Funds: The National Natural Science Foundation of China(61501147), The University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2018203), The Natural Science Foundation of Heilongjiang Province(YQ2019F011), The Fundamental Research Foundation for University of Heilongjiang Province (LGYC2018JQ013), The Application Research and Development Project of Harbin(2017RALX006)
  • 摘要:

    特征子空间学习是图像识别及分类任务的关键技术之一,传统的特征子空间学习模型面临两个主要的问题。一方面是如何使样本在投影到特征空间后有效地保持其局部结构和判别性。另一方面是当样本含噪时传统学习模型所发生的失效问题。针对上述两个问题,该文提出一种基于低秩表示(LRR)的判别特征子空间学习模型,该模型的主要贡献包括:通过低秩表示探究样本的局部结构,并利用表示系数作为样本在投影空间的相似性约束,使投影子空间能够更好地保持样本的局部近邻关系;为提高模型的抗噪能力,构造了一种利用低秩重构样本的判别特征学习约束项,同时增强模型的判别性和鲁棒性;设计了一种基于交替优化技术的迭代数值求解方案来保证算法的收敛性。该文在多个视觉数据集上进行分类任务的对比实验,实验结果表明所提算法在分类准确度和鲁棒性方面均优于传统特征学习方法。

  • 图  1  基于样本局部近邻关系的特征空间投影效果示意图

    图  2  低秩表示约束的鲁棒特征学习模型的效果示意图

    图  3  不同比例的随机脉冲噪声下的识别率曲线

    图  4  不同比例的随机条纹干扰下的识别率曲线

    图  5  不同训练样本数量下的识别率曲线

    图  6  参数取值与分类准确率的变化关系曲线

    图  7  目标函数值随迭代次数的收敛曲线

    算法1:综合目标函数的数值求解方案
     输入: 训练集X,类别标签Y, ${\lambda _1}$, ${\lambda _2}$, $\eta $, ${{Z}} = {{G}} = {{R}} = 0$,
     ${{E}} = 0$, ${{{Y}}_{\rm{1}}} = {{{Y}}_{\rm{2}}} = {{{Y}}_{\rm{3}}} = 0$, $\mu = 0.6$, ${\mu _{\max }} = {10^{10}}$, $\rho = 1.1$。
     输出: ${{P}}$
     While not convergence do
     1. 使用式(5)—(9)进行更新${{{P}}^{k + 1}}$, ${{{G}}^{k + 1}}$, ${{{R}}^{k + 1}}$, ${{{Z}}^{k + 1}}$, ${{{E}}^{k + 1}}$;
     2. 更新拉格朗日乘子及参数$\mu $:
      ${{{Y}}_1}^{k + 1} = {{{Y}}_1}^k + \mu \left( {{{X}} - {{X}}{{{Z}}^{k + 1}} - {{{E}}^{k + 1}}} \right)$;
      ${{{Y}}_2}^{k + 1} = {{{Y}}_2}^k + \mu \left( {{{{Z}}^{k + 1}} - {{{G}}^{k + 1}}} \right)$;
      ${{{Y}}_3}^{k + 1} = {{{Y}}_3}^k + \mu \left( {{{{Z}}^{k + 1}} - {{{R}}^{k + 1}}} \right)$;
      $\mu = \min \left( {{\mu _{\max }},\rho \mu } \right)$;
     end while
    下载: 导出CSV
  • 张涛, 唐振民. 一种基于非负低秩稀疏图的半监督学习改进算法[J]. 电子与信息学报, 2017, 39(4): 915–921. doi: 10.11999/JEIT160559

    ZHANG Tao and TANG Zhenmin. Improved algorithm based on non-negative low rank and sparse graph for semi-supervised learning[J]. Journal of Electronics &Information Technology, 2017, 39(4): 915–921. doi: 10.11999/JEIT160559
    成宝芝, 赵春晖, 张丽丽. 子空间稀疏表示高光谱异常检测新算法[J]. 哈尔滨工程大学学报, 2017, 38(4): 640–645. doi: 10.11990/jheu.201604006

    CHENG Baozhi, ZHAO Chunhui, and ZHANG Lili. An anomaly detection algorithm for hyperspectral images using subspace sparse representation[J]. Journal of Harbin Engineering University, 2017, 38(4): 640–645. doi: 10.11990/jheu.201604006
    BELHUMEUR P N, HESPANHA J P, and KRIEGMAN D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720. doi: 10.1109/34.598228
    CAI Deng, HE Xiaofei, ZHOU Kun, et al. Locality sensitive discriminant analysis[C]. The 20th International Joint Conference on Artifical Intelligence, Hyderabad, India, 2007: 708–713.
    CAI Sijia, ZHANG Lei, ZUO Wangmeng, et al. A probabilistic collaborative representation based approach for pattern classification[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2950–2959.
    REN Jiahuan, ZHANG Zhao, LI Sheng, et al. Robust projective low-rank and sparse representation by robust dictionary learning[C]. The 24th International Conference on Pattern Recognition, Beijing, China, 2018: 1851–1856.
    RAZZAGHI P, RAZZAGHI P, and ABBASI K. Transfer subspace learning via low-rank and discriminative reconstruction matrix[J]. Knowledge-Based Systems, 2019, 163: 174–185. doi: 10.1016/j.knosys.2018.08.026
    KANG Zhao, PENG Chong, and CHENG Qiang. Kernel-driven similarity learning[J]. Neurocomputing, 2017, 267: 210–219. doi: 10.1016/j.neucom.2017.06.005
    LI Sheng, SHAO Ming, and FU Yun. Multi-view low-rank analysis with applications to outlier detection[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(3): 32–53. doi: 10.1145/3168363
    LIU Guangcan and YAN Shuicheng. Latent low-rank representation for subspace segmentation and feature extraction[C]. 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 1615–1622.
    FANG Xiaozhao, HAN Na, WU Jigang, et al. Approximate low-rank projection learning for feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5228–5241. doi: 10.1109/TNNLS.2018.2796133
    MA Long, WANG Chunheng, XIAO Baihua, et al. Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2586–2593.
    LI Ao, LIU Xin, WANG Yanbing, et al. Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation[J]. PLoS One, 2019, 14(5): e0215450. doi: 10.1371/journal.pone.0215450
    PENG Chong, KANG Zhao, and CHENG Qiang. Subspace clustering via variance regularized ridge regression[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 21–26.
    ZHANG He and PATEL V M. Convolutional sparse and low-rank coding-based image decomposition[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2121–2133. doi: 10.1109/TIP.2017.2786469
    LIN Zhouchen, CHEN Minming, and MA Yi. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. 2010, arXiv: 1009.5055.
    WEN Zaiwen and YIN Wotao. A feasible method for optimization with orthogonality constraints[J]. Mathematical Programming, 2013, 142(1/2): 397–434. doi: 10.1007/s10107-012-0584-1
    CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM (JACM) , 2011, 58(3): 11–49. doi: 10.1145/1970392.1970395
    YANG Junfeng and ZHANG Yin. Alternating direction algorithms for $\ell_1$ -problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011, 33(1): 250–278. doi: 10.1137/090777761
    YANG Junfeng, YIN Wotao, ZHANG Yin, et al. A fast algorithm for edge-preserving variational multichannel image restoration[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 569–592. doi: 10.1137/080730421
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3360
  • HTML全文浏览量:  1931
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-20
  • 修回日期:  2019-09-30
  • 网络出版日期:  2020-01-20
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回