高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于小样本的迭代多重信号分类算法

王娟 王彤 吴建新

王娟, 王彤, 吴建新. 一种适用于小样本的迭代多重信号分类算法[J]. 电子与信息学报, 2020, 42(2): 445-451. doi: 10.11999/JEIT190160
引用本文: 王娟, 王彤, 吴建新. 一种适用于小样本的迭代多重信号分类算法[J]. 电子与信息学报, 2020, 42(2): 445-451. doi: 10.11999/JEIT190160
Juan WANG, Tong WANG, Jianxin WU. Iterative Multiple Signal Classification Algorithm with Small Sample Size[J]. Journal of Electronics & Information Technology, 2020, 42(2): 445-451. doi: 10.11999/JEIT190160
Citation: Juan WANG, Tong WANG, Jianxin WU. Iterative Multiple Signal Classification Algorithm with Small Sample Size[J]. Journal of Electronics & Information Technology, 2020, 42(2): 445-451. doi: 10.11999/JEIT190160

一种适用于小样本的迭代多重信号分类算法

doi: 10.11999/JEIT190160
基金项目: 国家自然科学基金(61471285)
详细信息
    作者简介:

    王娟:女,1987年生,博士生,研究方向为阵列信号处理、空时自适应处理、广域GMTI

    王彤:男,1974年生,教授,研究方向为合成孔径雷达成像、机载雷达运动目标检测

    吴建新:男,1982年生,副教授,研究方向为阵列信号处理、自适应信号处理、空时自适应处理

    通讯作者:

    王彤 twang@mail.xidian.edu.cn

  • 中图分类号: TN959.73

Iterative Multiple Signal Classification Algorithm with Small Sample Size

Funds: The National Natural Science Foundation of China (61471285)
  • 摘要:

    当样本数不足时,由采样协方差矩阵特征分解得到的噪声子空间偏离其真实值,使得多重信号分类(MUSIC)算法目标角度(DOA)估计性能下降。为了解决这个问题,该文提出了一种迭代算法通过校正信号子空间来提高MUSIC算法性能。该方法首先利用采样协方差矩阵特征分解得到的噪声子空间粗略估计目标角度;其次基于信源的稀疏性和导向矢量的低秩特性,由上一步得到的目标角度以及其邻域角度对应的导向矢量构造一个新的信号子空间;最后通过解一个优化问题来校正信号子空间。仿真结果表明,该算法有效地提高了子空间估计精度。基于新的信号子空间实现MUSIC DOA估计可以使得性能得到改善,且在低样本数下改善尤为明显。

  • 图  1  信号子空间的估计精度随着角度误差变化曲线,SNR=5 dB, $L = N$

    图  2  信号子空间的估计精度

    图  3  目标分辨率

    图  4  RMSE

  • 闫锋刚, 刘秋晨, 邵多, 等. 基于谱分解的降阶求根MUSIC算法[J]. 电子与信息学报, 2017, 39(10): 2421–2427. doi: 10.11999/JEIT170024

    YAN Fenggang, LIU Qiuchen, SHAO Duo, et al. Reduced-dimension Root-MUSIC algorithm based on spectral factorization[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2421–2427. doi: 10.11999/JEIT170024
    文才, 吴建新, 王彤, 等. 波束-多普勒酉ESPRIT多目标DOA估计[J]. 电子与信息学报, 2018, 40(5): 1136–1143. doi: 10.11999/JEIT170707

    WEN Cai, WU Jianxin, WANG Tong, et al. Multi-target DOA estimation using beam-doppler unitary ESPRIT[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1136–1143. doi: 10.11999/JEIT170707
    BELLILI F, ELGUET C, AMOR S B, et al. Code-aided DOA estimation from turbo-coded QAM transmissions: Analytical CRLBs and maximum likelihood estimator[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 2850–2865. doi: 10.1109/TWC.2017.2669026
    STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(12): 2140–2150. doi: 10.1109/29.61541
    PILLAI S U and KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(1): 8–15. doi: 10.1109/29.17496
    VASYLYSHYN V. Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer[J]. Signal Processing, 2013, 93(12): 3423–3429. doi: 10.1016/j.sigpro.2013.05.026
    QIAN Cheng, HUANG Lei, and SO H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140–144. doi: 10.1109/LSP.2013.2294676
    VASYLYSHYN V I. DOA estimation using beamspace root-music based estimator bank[C]. The 11th International Conference on Antenna Theory and Techniques, Kiev, Ukraine, 2017: 367–369.
    SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675
    SHAGHAGHI M and VOROBYOV S A. Iterative root-MUSIC algorithm for DOA estimation[C]. The 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Martin, France, 2013: 53–56.
    VINCENT F, PASCAL F, and BESSON O. A bias-compensated MUSIC for small number of samples[J]. Signal Processing, 2017, 138: 117–120. doi: 10.1016/j.sigpro.2017.03.015
    WANG Cheng, TANG Jun, and YANG Bin. Fast and convenient implementation of iterative eigenspace-based beamforming[J]. Electronics Letters, 2015, 51(9): 720–722. doi: 10.1049/el.2015.0131
    YI Shanchao, WU Ying, and WANG Yunlong. Projection-based robust adaptive beamforming with quadratic constraint[J]. Signal Processing, 2016, 122: 65–74. doi: 10.1016/j.sigpro.2015.11.016
    NIE Weike, FENG Dazheng, XIE Hu, et al. Improved MUSIC algorithm for high resolution angle estimation[J]. Signal Processing, 2016, 122: 87–92. doi: 10.1016/j.sigpro.2015.12.002
    WU Jianxin, WANG Tong, and BAO Zheng. Angle estimation for adaptive linear array using PCA-GS-ML estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 670–677. doi: 10.1109/TAES.2013.6404132
  • 加载中
图(4)
计量
  • 文章访问数:  3353
  • HTML全文浏览量:  1586
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 修回日期:  2019-08-30
  • 网络出版日期:  2019-09-04
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回