高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Pareto分布海杂波模型参数的组合双分位点估计方法

于涵 水鹏朗 施赛楠 杨春娇

于涵, 水鹏朗, 施赛楠, 杨春娇. 广义Pareto分布海杂波模型参数的组合双分位点估计方法[J]. 电子与信息学报, 2019, 41(12): 2836-2843. doi: 10.11999/JEIT190148
引用本文: 于涵, 水鹏朗, 施赛楠, 杨春娇. 广义Pareto分布海杂波模型参数的组合双分位点估计方法[J]. 电子与信息学报, 2019, 41(12): 2836-2843. doi: 10.11999/JEIT190148
Han YU, Penglang SHUI, Sainan SHI, Chunjiao YANG. Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2836-2843. doi: 10.11999/JEIT190148
Citation: Han YU, Penglang SHUI, Sainan SHI, Chunjiao YANG. Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2836-2843. doi: 10.11999/JEIT190148

广义Pareto分布海杂波模型参数的组合双分位点估计方法

doi: 10.11999/JEIT190148
基金项目: 国家自然科学基金(61871303)
详细信息
    作者简介:

    于涵:女,1993年生,博士生,研究方向为海杂波特性分析等

    水鹏朗:男,1967年生,博士,教授,研究方向为多速率滤波器理论及应用、图像处理和雷达目标检测

    施赛楠:女,1990年生,博士,讲师,研究方向为雷达信号处理和微弱目标检测

    杨春娇:女,1993年生,硕士,研究方向为雷达目标检测等

    通讯作者:

    于涵 hyu_5@stu.xidian.edu.cn

  • 中图分类号: TN958.93

Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model

Funds: The National Natural Science Foundation of China (61871303)
  • 摘要: 广义Pareto分布的复合高斯模型可以很好地描述高分辨低擦地角对海探测场景中海杂波的重拖尾特性,实现该杂波模型下双参数的有效估计对雷达检测性能具有重要意义。对此,该文提出一种双参数的组合双分位点(CBiP)估计方法。该估计方法基于低阶多项式方程的显式求根表达式,充分组合利用回波中的样本信息,旨在实现高精度的双参数估计过程。此外,考虑到实际雷达工作中存在岛礁、渔船等造成的功率异常大的野点样本时,不同于传统的矩估计、最大似然(ML)估计等方法,组合双分位点估计方法仍可保持估计性能的鲁棒性。仿真及实测数据实验表明,在纯杂波环境中,组合双分位点估计方法可以实现与最大似然估计方法近似的估计精度,若存在异常样本,组合双分位点估计方法的估计性能优于上述几种传统估计方法。
  • 图  1  不同q值下CBiP方法估计误差与样本数N的关系

    图  2  5种估计方法的RRMSE及KSD值随着形状参数的变化曲线

    图  3  包含野点时5种估计方法的RRMSE及KSD值随着形状参数的变化曲线

    图  4  IPIX实测数据中5种估计方法的性能比较

    图  5  CSIR实测数据中5种估计方法的性能比较

    表  1  IPIX实测数据(19980206_195948_ANTSTEP)中5种估计方法的估计结果比较

    估计区域区域A纯杂波区域B 含野点区域C
    估计方法 MLCBiPFMoMMoMMLBiPCBiPFMoMMoMMLBiP
    形状参数9.12098.99679.61009.74439.41069.87348.48741.34002.02602.13858.0111
    尺度参数(×10–4)2.66492.60622.42522.38802.48242.36013.305031.00006.757916.00003.5223
    K-S距离2.6131×10–60.01340.01380.01410.01330.01650.01350.09990.24620.07560.0485
    下载: 导出CSV

    表  2  CSIR实测数据(TFA10_004.02)中5种估计方法的估计结果比较

    估计区域区域A纯杂波区域B 含野点区域C
    估计方法 MLCBiPFMoMMoMMLBiPCBiPFMoMMoMMLBiP
    形状参数4.57466.25656.29005.05494.70486.46374.20171.29002.02231.83143.8543
    尺度参数(×10–4)9.28776.43836.27298.07528.83596.243013.430160.085512.451236.923114.9068
    K-S距离3.6008×10–60.01110.01740.01050.00640.01260.09070.12130.20600.10600.0144
    下载: 导出CSV
  • ANGELLIAUME S, ROSENBERG L, and RITCHIE M. Modeling the amplitude distribution of radar sea clutter[J]. Remote Sensing, 2019, 11(3): 319. doi: 10.3390/rs11030319
    WARD K, TOUGH R J A, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. 2nd ed. United Kingdom: Institute of Engineering Technology, 2013: 101-134.
    BALLERI A, NEHORAI A, and WANG Jian. Maximum likelihood estimation for compound-Gaussian clutter with inverse Gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775–779. doi: 10.1109/TAES.2007.4285370
    尹志盈, 张玉石. 雷达海杂波统计特性建模研究[J]. 装备环境工程, 2017, 14(7): 29–34. doi: 10.7643/issn.1672-9242.2017.07.006

    YIN Zhiying and ZHANG Yushi. Radar sea clutter modeling of statistical characteristic[J]. Equipment Environmental Engineering, 2017, 14(7): 29–34. doi: 10.7643/issn.1672-9242.2017.07.006
    SHUI Penglang, SHI Lixiang, YU Han, et al. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11): 1572–1576. doi: 10.1109/LSP.2016.2605129
    于涵, 水鹏朗, 施赛楠, 等. 复合高斯海杂波模型下最优相干检测进展[J]. 科技导报, 2017, 35(20): 109–118. doi: 10.3981/j.issn.1000-7857.2017.20.012

    YU Han, SHUI Penglang, SHI Sainan, et al. Development of optimum coherent detection under compound- Gaussian clutter model[J]. Science &Technology Review, 2017, 35(20): 109–118. doi: 10.3981/j.issn.1000-7857.2017.20.012
    赵文静, 刘畅, 刘文龙, 等. K分布海杂波背景下基于最大特征值的雷达信号检测算法[J]. 电子与信息学报, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092

    ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue based radar signal detection method for K distribution sea clutter environment[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
    丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    SHUI Penglang and LIU Ming. Subband adaptive GLRT-LTD for weak moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 423–437. doi: 10.1109/TAES.2015.140783
    SHUI Penglang, YU Han, SHI Lixiang, et al. Explicit bipercentile parameter estimation of compound-Gaussian clutter with inverse Gamma distributed texture[J]. IET Radar, Sonar & Navigation, 2018, 12(2): 202–208. doi: 10.1049/iet-rsn.2017.0174
    YU Han, SHUI Penglang, ZENG Weiliang, et al. Multiscan recursive bayesian method for parameter estimation of spatially-varying sea clutter models[C]. 2018 International Conference on Radar, Brisbane, Australia, 2018: 1–8. doi: 10.1109/RADAR.2018.8557270.
    夏晓云, 黎鑫, 张玉石, 等. 基于相位的岸基雷达地海杂波分割方法[J]. 系统工程与电子技术, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10

    XIA Xiaoyun, LI Xin, ZHANG Yushi, et al. Sea-land clutter segmentation method of shore-based radar based on phase information[J]. Systems Engineering and Electronics, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10
    BALAKRISHNAN N and COHEN A C. Order Statistics and Inference[M]. Boston: Academic Press, 1991: 7–17.
    WARD K D, BAKER C J, and WATTS S. Maritime surveillance radar. I. Radar scattering from the ocean surface[J]. IEE Proceedings F-Radar and Signal Processing, 1990, 137(2): 51–62. doi: 10.1049/ip-f-2.1990.0009
    孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813

    SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1887
  • HTML全文浏览量:  1030
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-14
  • 修回日期:  2019-08-12
  • 网络出版日期:  2019-09-03
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回