高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应时频同步压缩算法研究

李林 王林 韩红霞 姬红兵 江莉

李林, 王林, 韩红霞, 姬红兵, 江莉. 自适应时频同步压缩算法研究[J]. 电子与信息学报, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
引用本文: 李林, 王林, 韩红霞, 姬红兵, 江莉. 自适应时频同步压缩算法研究[J]. 电子与信息学报, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
Lin LI, Lin WANG, Hongxia HAN, Hongbing JI, Li JIANG. Research on the Adaptive Synchrosqueezing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
Citation: Lin LI, Lin WANG, Hongxia HAN, Hongbing JI, Li JIANG. Research on the Adaptive Synchrosqueezing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146

自适应时频同步压缩算法研究

doi: 10.11999/JEIT190146
基金项目: 国家自然基金项目(61803294)
详细信息
    作者简介:

    李林:男,1980年生,博士,副教授,研究方向为雷达信号处理、信号检测与估值

    王林:女,1995年生,硕士生,研究方向为非平稳信号处理

    韩红霞:1991年生,硕士,研究方向为非平稳信号分离与时频分析

    姬红兵:男,1963年生,博士,教授,研究方向为雷达信号处理、目标检测与跟踪

    江莉:1982年生,博士,研究方向为非线性系统分析、振动信号处理

    通讯作者:

    李林 lilin@xidian.edu.cn

  • 中图分类号: TN911.7

Research on the Adaptive Synchrosqueezing Algorithm

Funds: The National Natural Science Foundation of China (61803294)
  • 摘要:

    提高时频分辨率对多分量非平稳信号的分析与重建具有至关重要的作用。传统的时频分析方法由于窗口固定,分析频率变化较快的信号时存在时频聚集性不高的问题,无法自适应分辨多分量信号。该文针对频率快速变化信号,利用信号的局部信息特征,提出一种自适应的时频同步压缩变换算法。该方法有效提升了已有同步压缩变换时频分辨率,特别适用于频率接近且快速变换的多分量信号。同时,利用可分性条件,该文提出利用局部瑞利熵值对自适应窗口参数进行估计。最后,通过对合成信号和实测信号分析,证明了所提方法的可行性,对分析和重建复杂非平稳信号具有重要意义。

  • 图  1  两分量线性调频信号的各种时频处理结果图

    图  2  两分量线性调频信号的处理结果图

    图  3  蝙蝠回波信号的处理结果图

    图  4  雷达编队目标信号的处理结果图

  • 张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 国防工业出版社, 1998: 1–3.

    ZHANG Xianda and BAO Zheng. Non-stationary Nonlinear Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998: 1–3.
    COHEN L. Time-frequency Analysis[M]. Englewood Cliffs: Prentice Hall, 1995: 44–195.
    FLANDRIN P. Time-Frequency/Time-Scale Analysis[M]. Cambridge: Academic Press, 1999: 1–386.
    DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    AUGER F and FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068–1089. doi: 10.1109/78.382394
    OBERLIN T, MEIGNEN S, and PERRIER V. The Fourier-based synchrosqueezing transform[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 315–319. doi: 10.1109/ICASSP.2014.6853609.
    PHAM D H and MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168–3178. doi: 10.1109/TSP.2017.2686355
    OBERLIN T and MEIGNEN S. The second-order wavelet synchrosqueezing transform[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3994–3998. doi: 10.1109/ICASSP.2017.7952906.
    WANG Shibin, CHEN Xuefeng, SELESNICK I W, et al. Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 100: 242–288. doi: 10.1016/j.ymssp.2017.07.009
    HERRY C L, FRASCH M, SEELY A J, et al. Heart beat classification from single-lead ECG using the synchrosqueezing transform[J]. Physiological Measurement, 2017, 38(2): 171–187. doi: 10.1088/1361-6579/aa5070
    HE Kuanfang, LI Qi, and YANG Qing. Characteristic analysis of welding crack acoustic emission signals using synchrosqueezed wavelet transform[J]. Journal of Testing and Evaluation, 2018, 46(6): 2679–2691. doi: 10.1520/JTE20170218
    LI Lin, CAI Haiyan, JIANG Qingtang, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 791–809. doi: 10.1016/j.ymssp.2018.11.037
    STANKOVIĆ L. A measure of some time-frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621–631. doi: 10.1016/S0165-1684(00)00236-X
    FUSCUS E. Digitized 2.5 microsecond echolocation pulse emitted by the Large Brown Bat[EB/OL]. https://www.ece. rice.edu/dsp/software/bat.shtml, 2017.
  • 加载中
图(4)
计量
  • 文章访问数:  3315
  • HTML全文浏览量:  1558
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-05-27
  • 网络出版日期:  2019-08-23
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回