高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度卷积神经网络的多元医学信号多级上下文自编码器

袁野 贾克斌 刘鹏宇

袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135
引用本文: 袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135
Ye YUAN, Kebin JIA, Pengyu LIU. Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135
Citation: Ye YUAN, Kebin JIA, Pengyu LIU. Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135

基于深度卷积神经网络的多元医学信号多级上下文自编码器

doi: 10.11999/JEIT190135
基金项目: 国家自然科学基金(81871394),先进信息网络北京实验室基金(040000546618017)
详细信息
    作者简介:

    袁野:男,1991年生,博士生,研究方向为深度学习、健康信息学

    贾克斌:男,1962年生,教授,研究方向为多媒体信息系统、模式识别

    刘鹏宇:女,1979年生,副教授,研究方向为多媒体信息系统

    通讯作者:

    贾克斌 kebinj@bjut.edu.cn

  • 中图分类号: TP391.4

Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks

Funds: The National Natural Science Foundation of China (81871394), The Beijing Laboratory of Advanced Information Networks Foundation (040000546618017)
  • 摘要:

    多元医学信号的典型代表有多模态睡眠图和多通道脑电图等,采用无监督深度学习表征多元医学信号是目前健康信息学领域中的一个研究热点。为了解决现有模型没有充分结合医学信号多元时序结构特点的问题,该文提出了一种无监督的多级上下文深度卷积自编码器(mCtx-CAE)。首先改进传统卷积神经网络结构,提出一种多元卷积自编码模块,以提取信号片段内的多元上下文特征;其次,提出采用语义学习技术对信号片段间的时序信息进行自编码,进一步提取时序上下文特征;最后通过共享特征表示设计目标函数,训练端到端的多级上下文自编码器。实验结果表明,该文所提模型在两种应用于不同医疗场景下的多模态和多通道数据集(UCD和CHB-MIT)上表现均优于其它无监督特征学习方法,能有效提高多元医学信号的融合特征表达能力,对提高临床时序数据的分析效率有着重要意义。

  • 图  1  本文提出的多级上下文深度卷积自编码器结构图

    图  2  不同特征表示模型在CHB-MIT和UCD数据库上的ROC和PR曲线

    图  3  不同特征学习模型在CHB-MIT数据库上对不同超参数配置的影响

    图  4  不同特征学习模型在UCD数据库上对不同超参数配置对的影响

    表  1  多元卷积自编码模块具体配置参数

    编码单元卷积层非线性变换池化层
    元内编码单元$1 \times 3 \times 16$ReLU$1 \times 2$
    元间编码单元$C \times 3 \times 8$ReLU$1 \times 2$
    解码单元反卷积层非线性变换反池化层
    元间解码单元$C \times 3 \times 8$ReLU$1 \times 2$
    元内解码单元$1 \times 3 \times 16$ReLU$1 \times 2$
    下载: 导出CSV

    表  2  CHB-MIT数据库上的方法比较结果

    方法AUC-ROCAUC-PRF1分子准确率
    PCA0.8291 ± 0.04340.7021 ± 0.08720.6421 ± 0.02230.8768 ± 0.0223
    SAE0.5934 ± 0.03770.4180 ± 0.11890.0668 ± 0.04150.7987 ± 0.0309
    CAE0.8657 ± 0.03050.7646 ± 0.08810.6277 ± 0.12460.8690 ± 0.0267
    Med2Vec0.8155 ± 0.11810.5870 ± 0.16700.6066 ± 0.23630.8351 ± 0.0359
    Skip-gram+0.9090 ± 0.03560.7467 ± 0.15400.6288 ± 0.20400.8898 ± 0.0173
    CtxFusionEEG0.9287 ± 0.03060.7833 ± 0.11470.7202 ± 0.14850.9025 ± 0.0104
    Wave2Vec0.9035 ± 0.03710.8839 ± 0.02610.8267 ± 0.01840.9210 ± 0.0099
    m-CAE0.8946 ± 0.04010.8727 ± 0.01890.8417 ± 0.01310.9324 ± 0.0058
    mCtx-CAE0.9372 ± 0.04950.8980 ± 0.03330.8493 ± 0.01910.9412 ± 0.0110
    下载: 导出CSV

    表  3  UCD数据库上的方法比较结果

    方法AUC-ROCAUC-PRF1分数准确率
    PCA0.8177 ± 0.01420.5764 ± 0.01720.5204 ± 0.02750.6193 ± 0.0638
    SAE0.7068 ± 0.13720.4965 ± 0.09510.2760 ± 0.18150.4917 ± 0.1364
    CAE0.8386 ± 0.03760.5710 ± 0.04290.5180 ± 0.07010.6208 ± 0.0961
    Med2Vec0.7479 ± 0.07960.4836 ± 0.10460.3997 ± 0.13610.5619 ± 0.0619
    Skip-gram+0.8010 ± 0.09920.5406 ± 0.09950.4342 ± 0.17310.5884 ± 0.1077
    CtxFusionEEG0.7941 ± 0.14850.6358 ± 0.07090.5171 ± 0.19940.6375 ± 0.1074
    Wave2Vec0.8161 ± 0.05070.5984 ± 0.06980.5268 ± 0.06610.6408 ± 0.0723
    m-CAE0.8446 ± 0.03610.5727 ± 0.02150.5600 ± 0.04820.6562 ± 0.0767
    mCtx-CAE0.8648 ± 0.02580.6423 ± 0.04520.5655 ± 0.02280.6734 ± 0.0562
    下载: 导出CSV
  • JOHNSON A E W, GHASSEMI M M, NEMATI S, et al. Machine learning and decision support in critical care[J]. Proceedings of the IEEE, 2016, 104(2): 444–466. doi: 10.1109/JPROC.2015.2501978
    RAVI D, WONG C, DELIGIANNI F, et al. Deep learning for health informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 4–21. doi: 10.1109/JBHI.2016.2636665
    BOOSTANI R, KARIMZADEH F, and NAMI M. A comparative review on sleep stage classification methods in patients and healthy individuals[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 77–91. doi: 10.1016/j.cmpb.2016.12.004
    YUAN Ye, XUN Guangxu, JIA Kebin, et al. A multi-view deep learning framework for EEG seizure detection[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 83–94. doi: 10.1109/JBHI.2018.2871678
    ACAR E, LEVIN-SCHWARTZ Y, CALHOUN V D, et al. Tensor-based fusion of EEG and fMRI to understand neurological changes in schizophrenia[C]. 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4.
    JIA Xiaowei, LI Kang, LI Xiaoyi, et al. A novel semi-supervised deep learning framework for affective state recognition on EEG signals[C]. 2014 IEEE International Conference on Bioinformatics and Bioengineering, Boca Raton, USA, 2014: 30–37.
    LÄNGKVIST M, KARLSSON L, and LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42: 11–24. doi: 10.1016/j.patrec.2014.01.008
    HOLZINGER A. Machine Learning for Health Informatics[M]. Cham: Springer, 2016: 161–182.
    SUPRATAK A, LI Ling, and GUO Yike. Feature extraction with stacked autoencoders for epileptic seizure detection[C]. The 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014: 4184–4187.
    YAN Bo, WANG Yong, LI Yuheng, et al. An EEG signal classification method based on sparse auto-encoders and support vector machine[C]. 2016 IEEE/CIC International Conference on Communications in China, Chengdu, China, 2016: 1–6.
    LIN Qin, YE Shuqun, HUANG Xiumei, et al. Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning[C]. The 12th International Conference on Intelligent Computing, Lanzhou, China, 2016: 802–810.
    YANG Jianli, BAI Yang, LI Guojun, et al. A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression[J]. Bio-medical Materials and Engineering, 2015, 26(S1): S1549–S1558. doi: 10.3233/BME-151454
    XUN Guangxu, JIA Xiaowei, and ZHANG Aidong. Detecting epileptic seizures with electroencephalogram via a context-learning model[J]. BMC Medical Informatics and Decision Making, 2016, 16(Suppl 2): 70. doi: 10.1186/s12911-016-0310-7
    LI Xiaoyi, JIA Xiaowei, XUN Guangxu, et al. Improving EEG feature learning via synchronized facial video[C]. 2015 IEEE International Conference on Big Data, Santa Clara, USA, 2015: 843–848.
    YUAN Ye, XUN Guangxu, SUO Qiuling, et al. Wave2Vec: Deep representation learning for clinical temporal data[J]. Neurocomputing, 2019, 324: 31–42. doi: 10.1016/j.neucom.2018.03.074
    YUAN Ye, XUN Guangxu, JIA Kebin, et al. A multi-context learning approach for EEG epileptic seizure detection[J]. BMC Systems Biology, 2018, 12(6): 47–57. doi: 10.1186/s12918-018-0626-2
    ZHANG Junming, WU Yan, BAI Jing, et al. Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers[J]. Transactions of the Institute of Measurement and Control, 2016, 38(4): 435–451. doi: 10.1177/0142331215587568
    YULITA I N, FANANY M I, and ARYMURTHY A M. Sequence-based sleep stage classification using conditional neural fields[J]. arXiv preprint arXiv:1610.01935 , 2016.
    LÄNGKVIST M, KARLSSON L, and LOUTFI A. Sleep stage classification using unsupervised feature learning[J]. Advances in Artificial Neural Systems, 2012, 2012: 107046. doi: 10.1155/2012/107046
    MASCI J, MEIER U, CIREŞAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. The 21st International Conference on Artificial Neural Networks, Espoo, Finland, 2011: 52–59.
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
    MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 3111–3119.
    CHOI E, BAHADORI M T, SEARLES E, et al. Multi-layer representation learning for medical concepts[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 1495–1504.
    SHOEB A H. Application of machine learning to epileptic seizure onset detection and treatment[D]. [Ph.D. dissertation], Massachusetts Institute of Technology, 2009.
    GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215–E220. doi: 10.1161/01.CIR.101.23.e215
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861–874. doi: 10.1016/j.patrec.2005.10.010
    DAVIS J and GOADRICH M. The relationship between precision-recall and ROC curves[C]. The 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 233–240.
    HE Haibo and GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263–1284. doi: 10.1109/TKDE.2008.239
    ZEILER M D. ADADELTA: An adaptive learning rate method[J]. arXiv preprint arXiv:1212.5701, 2012.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  4708
  • HTML全文浏览量:  1522
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-08-17
  • 网络出版日期:  2019-08-28
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回