Optimal Scheme of Resource Allocation for Ultra-reliable and Low-latency in Machine Type Communications Based on Non-orthogonal Multiple Access with Short Block Transmission
-
摘要: 针对机器类通信(MTC)应用场景的业务特征和服务质量(QoS)要求,该文考虑基于非正交多址(NOMA)的MTC中短分组/短编码块传输,探讨MTC中基于NOMA的高可靠低迟延无线资源优化问题。首先,上行传输是基于NOMA的MTC通信的瓶颈,考虑无线蜂窝网络中支持NOMA和高可靠低迟延性能要求,该文建立了上行无线资源优化的系统模型;然后,分析上行传输迟延,导出基于距离的链路可靠性函数;进一步,以迟延、可靠性和带宽为约束下条件,提出一种最大化中心用户和速率的无线资源分配算法,并给出算法的收敛性证明和复杂度分析;最后,实验仿真验证了所提算法的性能优势。Abstract: For the service characteristics and Quality of Service (QoS) requirements of Machine Type Communications (MTC), short-packet/short-coded block transmission in MTC based on Non-Orthogonal Multiple Access (NOMA) is considered in this paper, and the resource optimization problem of the Ultra-Reliable and Low-Latency (URLL) in MTC based on NOMA is discussed. Currently, uplink transmission is a bottleneck of MTC based on NOMA. Firstly, considering the performance requirements supporting NOMA and high reliability and low latency in wireless cellular networks, a system model for uplink wireless resource optimization is established. Then, the uplink transmission delay is analyzed and the link reliability function based on distance is derived. Further, with the constraints of delay, reliability and bandwidth, a wireless resource allocation algorithm for maximizing the sum rates of central users is proposed, and also the convergence proof and complexity analysis of the algorithm are given. Finally, the simulation results show the performance advantages of the proposed optimal scheme.
-
表 1 算法1的具体流程
算法1 用户2的和速率最大化算法 步骤1 输入${N_k}$, ${r_k}$,当${N_k} \le {N_{\max }}$时,初始值${B_{lb}} = 0$, ${B_{ub}} = {W_{\rm{c}}}$, ${B_0} = \frac{{{B_{lb}} + {B_{ub}}}}{2}$; 步骤2 当${B_{ub}} - {B_{lb}} > {\delta _b}$,通过二分法计算得到使${f_u}\left( {{r_k},{N_k},{B_i},\varepsilon _i^1,\varepsilon _i^2} \right)$最小化的$\varepsilon _i^1$, $\varepsilon _i^2$; 步骤3 若${f_u}\left( {{r_k},{N_k},{B_i},\varepsilon _i^1,\varepsilon _i^2} \right) > {\varepsilon ^{\max }}$,更新初始值${B_{lb}} = {B_i}$, ${B_i} = \frac{{{B_{1b}} + {B_{ub}}}}{2}$,或者${B_{ub}} = {B_i}$, ${B_i} = \frac{{{B_{1b}} + {B_{ub}}}}{2}$;否则转步骤4; 步骤4 若${f_u}\left( {{r_k},{N_k},{B_i},\varepsilon _i^1,\varepsilon _i^2} \right) < {\varepsilon ^{\max }}$, ${B_k}({N_k}) = {B^{\rm{opt}}}$或者${B_k}({N_k}) = {\rm{NaN}}$; 步骤5 求出$N_k^*{\rm{ = }}\mathop {\arg }\limits_{{N_k}} \min {N_k}{B_k}({N_k})$, $B_k^*{\rm{ = }}{B_k}(N_k^*)$; 步骤6 把$N_k^*$, $B_k^*$代入到$R_k^2$中求出最优的$R_k^{2 * }$。 -
WANG Mao, YANG Wenjie, ZOU Jun, et al. Cellular machine-type communications: Physical challenges and solutions[J]. IEEE Wireless Communications, 2016, 23(2): 126–135. doi: 10.1109/MWC.2016.7462494 BENNIS M, DEBBAH M, and POOR H V. Ultrareliable and low-latency wireless communication: tail, risk, and scale[J]. Proceedings of the IEEE, 2018, 106(10): 1834–1853. doi: 10.1109/JPROC.2018.2867029 ISLAM M T, TAHA A E M, and AKL S. A survey of access management techniques in machine type communications[J]. IEEE Communications Magazine, 2014, 52(4): 74–81. doi: 10.1109/MCOM.2014.6807949 DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558 WONG V W S, SCHOBER R, NG D W K, et al. Key Technologies for 5G Wireless Systems Physical Layer Caching with Limited Backhaul in 5G Systems[M]. Cambridge: Cambridge University Press, 2017: 236–270. LIEN Shaoyu, HUNG Shaochou, DENG D J, et al. Efficient ultra-reliable and low latency communications and massive machine-type communications in 5G new radio[C]. Proceedings of IEEE Global Communications Conference, Singapore, 2017: 1–7. doi: 10.1109/GLOCOM.2017.8254211. PLODER O, PALAORO N, ETZLINGER B, et al. A cross-layer approach for ultra-low-latency machine type communication[C]. Proceedings of IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997462. SUN Xiaofang, YAN Shihao, YAN Nan, et al. Short-packet downlink transmission with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4550–4564. doi: 10.1109/TWC.2018.2827368 LI Anxin, CHEN Xiaohang, and JIANG Huiling. Contention based uplink transmission with NOMA for latency reduction[C]. Proceedings of the 2017 IEEE 85th Vehicular Technology Conference, Sydney, Australia, 2017: 1–5. doi: 10.1109/VTCSpring.2017.8108486. 3GPP. Study on scenarios and requirements for next generation access technologies[R]. TR 38.913, 2017. 3GPP. Further advancements for E-UTRA physical layer aspects[R]. TR 36.814 v9.0.0, 2010. AIJAZ A, TSHANGINI M, NAKHAI M R, et al. Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-existence under statistical QoS guarantees[J]. IEEE Transactions on Communications, 2014, 62(7): 2353–2365. doi: 10.1109/TCOMM.2014.2328338 ABDELSADEK M Y, GADALLAH Y, and AHMED M H. An LTE-based optimal resource allocation scheme for delay-sensitive M2M deployments coexistent with H2H users[C]. Proceedings of IEEE Conference on Computer Communications Workshops, Atlanta, USA, 2017: 139–144. doi: 10.1109/INFCOMW.2017.8116366. SHE Changyang, YANG Chenyang, and QUEK T Q S. Radio resource management for ultra-reliable and low-latency communications[J]. IEEE Communications Magazine, 2017, 55(6): 72–78. doi: 10.1109/MCOM.2017.1601092 AIJAZ A. Towards 5G-enabled tactile internet: radio resource allocation for haptic communications[C]. Proceedings of IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6. doi: 10.1109/WCNC.2016.7564661. SHARIATMADARI H, DUAN Ruifeng, IRAJI S, et al. Resource allocations for ultra-reliable low-latency communications[J]. International Journal of Wireless Information Networks, 2017, 24(3): 317–327. doi: 10.1007/s10776-017-0360-5 DI Boya, SONG Lingyang, LI Yonghui, et al. Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 25(10): 2383–2397. doi: 10.1109/JSAC.2017.2726018