A New Method for Image Superpixel Segmentation
-
摘要:
针对现有超像素分割方法无法自动确定合适的超像素数目,以及难以有效贴合图像目标边界等问题,该文提出一种新的利用局部信息进行多层级简单线性迭代聚类的图像超像素分割方法。首先,运用基于局部信息的简单线性迭代聚类(LI-SLIC)对原始图像进行超像素初分割,然后,根据超像素的色彩标准差对其进行自适应多层级迭代分割,直至每个超像素块的色彩标准差小于预设阈值,最后,利用相邻超像素间的色彩差异对过分割的超像素进行合并。为验证方法的有效性,该文采用Berkeley, Pascal VOC和3Dircadb公共数据库作为实验数据集,并与其他多种超像素分割方法进行了比较。实验结果表明,该文提出的超像素分割方法能更精确贴合图像目标边界,有效抑制图像过分割和欠分割。
-
关键词:
- 图像处理 /
- 超像素 /
- 局部信息简单线性迭代聚类 /
- 多层级迭代分割 /
- 超像素合并
Abstract:Considering the problem that the existing superpixel methods are usually unable to set an appropriate number of generated superpixels automatically and unable to adhere to image boundaries effectively, a new superpixel method is proposed in this paper, which utilizes local information to perform multi-level simple linear iterative clustering to generate superpixels. First, original image is initially segmented by Simple Liner Iterative Clustering based on Local Information (LI-SLIC). Then, each superpixel is segmented iteratively until its color standard deviation is lower than a predefined threshold. Finally, the over-segmented superpixels are merged based on the color differences between adjacent superpixels. Experiments on Berkeley, Pascal VOC and 3Dircadb databases, as well as comparison with other methods indicate that the proposed method can adhere to image boundaries more accurately, and can prevent over- and under- segmentations more effectively.
-
表 1 Berkeley数据库超像素分割结果评价(均值±标准差)
表 2 Pascal VOC数据库超像素分割结果评价(均值±标准差)
-
WANG Murong, LIU Xiabi, GAO Yixuan, et al. Superpixel segmentation: A benchmark[J]. Signal Processing: Image Communication, 2017, 56: 28–39. doi: 10.1016/j.image.2017.04.007 ZHOU Xianen, WANG Yaonan, ZHU Qing, et al. SSG: Superpixel segmentation and GrabCut-based salient object segmentation[J]. The Visual Computer, 2019, 35(3): 385–398. doi: 10.1007/s00371-018-1471-4 SHAO Hong, YU Tianshu, XU Mengjia, et al. Image region duplication detection based on circular window expansion and phase correlation[J]. Forensic Science International, 2012, 222(1/3): 71–82. TIAN Zhiqiang, LIU Lizhi, ZHANG Zhenfeng, et al. Superpixel-based segmentation for 3D prostate MR images[J]. IEEE Transactions on Medical Imaging, 2016, 35(3): 791–801. doi: 10.1109/TMI.2015.2496296 WANG Jun, LIU Weibin, XING Weiwei, et al. Visual object tracking with multi-scale superpixels and color-feature guided kernelized correlation filters[J]. Signal Processing: Image Communication, 2018, 63: 44–62. doi: 10.1016/j.image.2018.01.005 LI Zhengqin and CHEN Jiansheng. Superpixel segmentation using linear spectral clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1356–1363. SHI Jianbo and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888–905. doi: 10.1109/34.868688 GIRAUD R, TA V T, and PAPADAKIS N. Robust superpixels using color and contour features along linear path[J]. Computer Vision and Image Understanding, 2018, 170: 1–13. doi: 10.1016/j.cviu.2018.01.006 ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2281. doi: 10.1109/TPAMI.2012.120 ACHANTA R and SÜSSTRUNK S. Superpixels and polygons using simple non-iterative clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4895–4904. VASQUEZ D and SCHARCANSKI J. An iterative approach for obtaining multi-scale superpixels based on stochastic graph contraction operations[J]. Expert Systems with Applications, 2018, 102: 57–69. doi: 10.1016/j.eswa.2018.02.027 CONZE P H, NOBLET V, ROUSSEAU F, et al. Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 223–233. doi: 10.1007/s11548-016-1493-1 MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98–136. doi: 10.1007/s11263-014-0733-5 SOLER L, HOSTETTLER A, AGNUS V, et al. 3D image reconstruction for comparison of algorithm database: A patient-specific anatomical and medical image database[EB/OL]. http://www-sop.inria.fr/geometrica/events/wam/abstract-ircad.pdf.