Analysis for Effect of Radar Intermittent Radiation on the Performance of Cross Location
-
摘要:
针对雷达采取间歇辐射的射频隐身管控措施,以双站测向交叉定位为例,该文研究了辐射时间比与定位性能的影响关系。首先分析了雷达间歇辐射的管控方法,然后在载机做匀速直线运动的假设下,采用克拉美罗下界(CRLB)方法,建立了辐射时间比对定位精度的影响模型。最后给出了模型的求解步骤并进行了仿真验证。仿真结果表明,不同辐射时间比对定位性能的影响不同,在初始距离为100 km,辐射时间比小于0.5时,定位收敛时间超过10 s,可以有效降低测向交叉定位的性能。
Abstract:For the radio frequency stealth control measure of radar intermittent radiation, the relationship between radiation time ratio and positioning performance is studied which takes cross location with two stations as an example. Firstly, the control method of radar intermittent radiation is analyzed. Then, under the assumption of uniform linear motion of the carrier aircraft, the influence model of radiation time ratio on positioning accuracy is established by using the Cramer-Rao Lower Bound (CRLB). Finally, the solution steps of the model are given and verified by simulation. The simulation results show that different radiation time ratios have different effects on the location performance. When the initial distance is 100 km and the radiation time ratio is less than 0.5, the location convergence time exceeds 10 s, which can effectively reduce the performance of cross location with two stations.
-
表 1 仿真参数
参数 取值 有效辐射功率 110 dBm 发射频率 8 GHz 波束宽度 2.2°×2.2° 副瓣电平 –25 dB 初始距离 100 km,70 km 载机飞行速度 300 m/s 侦察飞机飞行速度 300 m/s 基线长度 30 km 测向精度 0.5° 导航精度 50 m 采样周期 100 ms 表 2 不同辐射时间比对收敛时间的影响(s)
辐射时间比$\beta $ 初始距离100 km 初始距离70 km 1.00 2.1 0.9 0.90 2.2 1.0 0.80 3.3 1.5 0.75 3.8 1.6 0.66 7.4 2.8 0.50 12.2 6.2 0.33 19.0 10.9 0.25 25.3 14.5 0.20 31.6 18.1 0.10 46.5 27.3 表 3 不同辐射时间比及时隙重复周期下的收敛时间(s)
$\tau /T$(%) T(s) 0.5 1 2 3 4 100 3.2 3.2 3.2 3.2 3.2 80 4.1 4.1 4.1 3.9 4.2 50 6.8 7.1 6.5 6.6 5.4 40 10.1 9.3 8.6 7.2 8.8 30 20.5 29.2 24.5 15.8 13.0 20 51.5 50.1 48.3 40.8 44.7 -
PARIKH A, KAMALAPURKAR R, and DIXON W E. Target tracking in the presence of intermittent measurements via motion model learning[J]. IEEE Transactions on Robotics, 2018, 34(3): 805–819. doi: 10.1109/TRO.2018.2821169 YADAV R, DAHIYA P K, and MISHRA R. Comparative analysis of automotive radar sensor for collision detection and warning system[J]. International Journal of Information Technology, 2018(12): 1–6. doi: 10.1007/s41870-018-0167-3 吴巍, 柳毅, 王国宏, 等. 辐射限制下有源无源协同跟踪技术[J]. 信息与控制, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418WU Wei, LIU Yi, WANG Guohong, et al. Active and passive synergy tracking technique with emission constraint[J]. Information and Control, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418 吴巍, 王国宏, 李世忠. 雷达间歇辅助下雷达红外协同跟踪技术[J]. 火力与指挥控制, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040WU Wei, WANG Guohong, and LI Shizhong. Research on radar and IRST synergistic tracking with radar intermittent assistant[J]. Fire Control &Command Control, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040 熊久良, 徐宏, 韩壮志, 等. 基于组网的火控雷达间歇式目标跟踪技术研究[J]. 现代雷达, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004XIONG Jiuliang, XU Hong, HAN Zhuangzhi, et al. A study on intermittent target tracking technology in fire-control radar network[J]. Modern Radar, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004 ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Multiple-target tracking with adaptive sampling intervals for phased-array radar[J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 760–766. doi: 10.3969/j.issn.1004-4132.2011.05.006 ZHANG Zhenkai, ZHU Jiehao, TIAN Yubo, et al. Novel sensor selection strategy for LPI based on an improved IMMPF tracking method[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1004–1010. doi: 10.1109/jsee.2014.00115 BENOUDNINE H, KECHE M, OUAMRI A, et al. New efficient schemes for adaptive selection of the update time in the IMMJPDAF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 197–214. doi: 10.1109/taes.2012.6129630 刘学全, 李波, 万开方, 等. 基于多传感器协同的雷达猝发技术研究[J]. 中国民航大学学报, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005LIU Xuequan, LI Bo, WAN Kaifang, et al. Study on radar burst technology based on multi-sensor synergy[J]. Journal of Civil Aviation University of China, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005 ZHOU Biao, SUN Chao, AHN D, et al. A novel passive tracking scheme exploiting geometric and intercept theorems[J]. Sensors, 2018, 18(3): 895. doi: 10.3390/s18030895 张国凯, 何佳洲, 戴霄. 基于椭球模型的雷达/ESM联合定位算法[J]. 指挥控制与仿真, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007ZHANG Guokai, HE Jiazhou, and DAI Xiao. Radar/ESM locating algorithm based on the ellipsoid model of globe[J]. Command Control &Simulation, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007 NARYKOV A S and YAROVOY A. Sensor selection algorithm for optimal management of the tracking capability in multisensor radar system[C]. 2013 European Microwave Conference, Nuremberg, Germany, 2013: 1811–1814. 吴卫华, 江晶, 高岚. 机载雷达辅助无源传感器对杂波环境下机动目标跟踪[J]. 控制与决策, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781WU Weihua, JIANG Jing, and GAO Lan. Tracking maneuvering target in clutter with passive sensor aided by airborne radar[J]. Control and Decision, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781 YANG Chao, ZHENG Jiangying, REN Xiaoqiang, et al. Multi-sensor Kalman filtering with intermittent measurements[J]. IEEE Transactions on Automatic Control, 2018, 63(3): 797–804. doi: 10.1109/TAC.2017.2734643 HUANG He and WANG Wenqin. FDA-OFDM for integrated navigation, sensing, and communication systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6): 34–42. doi: 10.1109/MAES.2018.170109 汪晗, 成昂轩, 王坤, 等. 无线传感器网络分布式迭代定位误差控制算法[J]. 电子与信息学报, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 孙仲康, 周一宇, 何黎星. 单多基地有源无源定位技术[M]. 北京: 国防工业出版社, 1996: 291–294.SUN Zhongkang, ZHOU Yiyu, and HE Lixing. Active and Passive Location Technology by Single and Multiple Platforms[M]. Beijing: National Defense Industry Press, 1996: 291–294. 张保群. 辐射时序对单站无源跟踪性能的影响[J]. 电讯技术, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007ZHANG Baoqun. Effect of radiation time sequence on passive tracking with single observation platform[J]. Telecommunication Engineering, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007